
SR2500
VXI Digital Test Subsystem

1

2

7

6

5

3

4

SR2500 System Overview and
Programmer's Guide

SR2520 Expansion Module

RG2500 Rail Generator

SR2520 w/Guided Probe Option

SR2510 Main Module

��
��

��
��

SR
25

00
 V

X
I

D
ig

it
al

 T
es

t
Su

bs
ys

te
m

Appendices

Application & Technical Notes

8WaveEdit Digital Waveform Editor

The Performance Leader
in VXI Digital Testing ...

Interface Technology, Inc.
300 S. Lemon Creek Drive, Ste. A

Walnut, CA 91789

Rev. 05 Jun. '98

SR2500

VXI Digital
Test Subsystem

Includes Coverage of:

o SR2500 Subsystem
o SR2510 Main Module
o SR2520 Expansion Module
o SR2520 w/Guided Probe Option
o RG2500 Rail Generator
o WaveEdit Digital Waveform Editor

Proprietary Notice

This document, and the technical information contained herein, are proprietary of Interface
Technology and shall not, without the express written permission of Interface Technology, be
used in any form or part to solicit competitive quotations. The information provided herein may
be used for operational purposes only, or for the purpose of incorporation into technical specifi-
cations or other documents which specify procurement from Interface Technology.

DISCLAIMERS

Interface Technology, Inc. makes no warranty of any kind with regard to this material, includ-
ing, but not limited to, implied warranties or fitness for a particular use or purpose.

Interface Technology, Inc. shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the performance or use of this material.

Interface Technology, Inc. reserves the right to make changes to its products and to the content
of this manual without notice.

User's Manual

SR2500 System Overview
and Programmer's Guide

Rev. 05 Apr 1998
Change 2 Oct 2000

�����������

	
��������
��
�����������

�������������������������

� � � � � � � � 	
 �� �� ��

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

����
������

���
��

�!

������

����
�	�

���������

������

	�����
����	
�

������

�����

������
�������

�!

�� � �

�"#$%&'(%
�()*+,

���������

������������

���
����

���
��

SR2500 User's Manual i

Rev. 05Interface Technology

Table of Contents

Contents

Chapter 1
General Description

About This Manual .. 1-1
Arrangement of Manual .. 1-1
Arrangement of Contents, This Manual ... 1-1
Applicability ... 1-1
Supersedure Notice ... 1-1

Equipment Description .. 1-1
SR2510 Main Module ... 1-2
SR2520 Expansion Module .. 1-3
SR2520 w/Guided Probe (option) ... 1-4
RG2500 Rail Generator (option) .. 1-4

Test Programs .. 2-1
Fields ... 2-1

Non-Algorithmic Fields .. 2-2
Algorithmic Fields .. 2-2
Hardware Fields .. 2-3

Vector Looping .. 2-3
Program Branching .. 2-3

GOTO.. 2-3
GOSUB ... 2-4
RETURN ... 2-4

Data Rates .. 2-4
VME A32 Dual Access Memory .. 2-4
Output Data Formatiing ... 2-4

NRZ (Non-Return-to-Zero) ... 2-5
RZ (Return-to-Zero) .. 2-5
RONE (Return-to-One) ... 2-5
RC (Return-to-Compliment) ... 2-5
RI (Return-to-Inhibit/Tristate) .. 2-6

Input Data Formatting ... 2-6
Edge Mode .. 2-6
Window Mode... 2-6

Memory ... 2-7
Control Memory .. 2-7
Stimulus Memory .. 2-7
Output Memory ... 2-7
Tristate Memory .. 2-7
Stimulus Algorithmic Memory
Response Memory... 2-8

Record Memory ... 2-9
Record Memory and Signature Analysis Control 2-9
Programming Languages ... 2-10

Chapter 2
Test Programming Parameters

ii SR2500 User's Manual

Rev. 05 Interface Technology

Table of Contents

Contents (continued)

SCPI Command Syntax ... 3-1
Basic Programming ... 3-3
Defining Tests .. 3-4
Test Definition ... 3-6
Test Deletion .. 3-7
Test Definition Catalog ... 3-8
Test Definition Status Query ... 3-9
Free Vector Space Query ... 3-10
Global Test Parameters .. 3-12
Selecting the Active Test ... 3-14
Setting the Program Loop Count ... 3-15
Setting the Test System Frequency.. 3-16
Setting the Test System Period .. 3-17
Setting the System Clock Frequency ... 3-18
Selecting the System Clock Source ... 3-20
Selecting the Slope of the External Clock ... 3-21
Setting the External Clock Threshold Level ... 3-22
Selecting the System Gate Source ... 3-23
Setting the External Gate Threshold Level ... 3-24
Selecting the Polarity of the External Gate ... 3-25
Selecting the Reference Oscillator Source .. 3-26
Selecting the System Trigger Source ... 3-27
Selecting the Slope of the External Trigger .. 3-28
Setting the External Trigger Threshold Level 3-29
Field Definitions .. 3-30
Field Definition & Pin Assignment ... 3-32
Field Deletion .. 3-38
Selecting the Field Radix .. 3-39
Field Definition Catalog .. 3-40
Loading and Querying Test Vectors .. 3-42
Selecting the Default Stimulus Field ... 3-45
Loading/Querying Stimulus Patterns .. 3-46
Clearing Stimulus Patterns .. 3-49
Enabling the Armdata Function ... 3-51
Setting the Armdata Pattern ... 3-52
Loading the Stimulus Macro Command Memory 3-54

COMMAND DEFINITIONS ... 3-58

SProgram[(OUT)] .. 3-58
EProgram[(OUT)] ... 3-58
OUTput[(OUT)] .. 3-58
WLoopuntil([OUT](<loop_cond>)) .. 3-58

Chapter 3
Programming

SR2500 User's Manual iii

Rev. 05Interface Technology

Table of Contents

Contents (continued)

SLoopuntil([OUT](<loop_cond>)) ... 3-59
ELoop[(OUT)] ... 3-59
SCONDition([OUT](<jump_cond>)) ... 3-60
SJMPPage(Supported Only on 256K and 1M Vector Cards) 3-60
JMP([OUT](<label_name>)) .. 3-60
JSRoutine([OUT](<label_name>)) ... 3-60
RTSubroutine[(OUT] .. 3-62
CJMP([OUT](<label_name>)) .. 3-62
CJSRoutine([OUT](<label_name>)) ... 3-62
CRTSubroutine[(OUT)] .. 3-63
CLEARError[(OUT)] .. 3-64

CONDITION DEFINITIONS .. 3-64

COUNt == count_value ... 3-64
RCOMpare == TRUE ... 3-65
RCOMpare != TRUE .. 3-65
LATCherror == TRUE .. 3-65
LATCherror != TRUE ... 3-65
STRigger == TRUE ... 3-65
FRONtpanel && match_pattern .. 3-65
FRONtpanel &!match_pattern .. 3-66
QUALifword && qual_combination .. 3-66
QUALifword &! qual_combination .. 3-66
Redefining Macro Command Label Vectors ... 3-68
Deleting Macro Command Labels ... 3-69
Copying Stimulus Macro Commands .. 3-70
Selecting the Default Record Field ... 3-72
Loading/Querying Record Patterns ... 3-73
Clearing Record Patterns ... 3-76

Trace TMACRO's.. 3-78

Post Trigger TMACRO Definition .. 3-80
Sequencing TMACRO Definition ... 3-84

Run Time Commands ... 3-87

Setting the Arm Counter .. 3-88
Initializing the Test Program ... 3-89
Software Trigger Command .. 3-90
Test Program Abort Command .. 3-91

iv SR2500 User's Manual

Rev. 05 Interface Technology

Table of Contents

Contents (continued)

Reading Recorded Data .. 3-92

Reading Recorded Patterns.. 3-94
Compare Error Status Query ... 3-96
Searching Record Memory .. 3-97

Advanced Programming ... 3-101

Pattern Editing .. 3-102

Copy Stimulus Patterns ... 3-105
Filling Stimulus Memory .. 3-108
Searching Stimulus Memory ... 3-112
Copying Record and Response Patterns .. 3-115
Filling Response Memory ... 3-118
Searching Response Memory .. 3-122
I/O Formatting and Timing .. 3-126
Stimulus Format and Timing ... 3-128
Clearing Stimulus Format and Timing .. 3-131
Stimulus Format and Timing Catalog.. 3-133
Record Sample Mode and Timing ... 3-135
Clearing Record Sample Mode and Timing .. 3-138
Expected Compare Offset .. 3-140
Record Sample Mode and Timing Catalog ... 3-141

Algorithmic Pattern Generation .. 3-142

Stimulus Algorithmic Pattern Generation ... 3-145
Algorithmic Output Command Definitions ... 3-147

NONAlgorithmic .. 3-147
INCrement ... 3-147
DECrement .. 3-147
XOR .. 3-147
HOLDData .. 3-147
HOLDAll .. 3-147
SLEFTZero ... 3-148
SLEFTOne .. 3-148
SLEFTComplement .. 3-148
RLEFT .. 3-148
SRIGHTZero ... 3-148
SRIGHTOne .. 3-149
SRIGHTComplement .. 3-149
RRIGHT .. 3-149

SR2500 User's Manual v

Rev. 05Interface Technology

Table of Contents

Contents (continued)

LOADProgram .. 3-149
OUTPUTParm .. 3-149

Clearing Stimulus Algorithmic Memory ... 3-151
Copying Stimulus Algorithmic Commands ... 3-153
Filling Stimulus Algorithmic Memory .. 3-155

Response Algorithmic Pattern Generation 3-157

Algorithmic Expect Command Definitions ... 3-159
NONAlgorithmic .. 3-159
INCrement ... 3-159
DECrement .. 3-159
XOR .. 3-159
HOLDData .. 3-159
HOLDAll .. 3-159
SLEFTZero ... 3-160
SLEFTOne .. 3-160
SLEFTComplement .. 3-160
RLEFT .. 3-160
SRIGHTZero ... 3-160
SRIGHTOne .. 3-161
SRIGHTComplement .. 3-161
RRIGHT .. 3-161
LOADParam ... 3-161
OUTPUTParm .. 3-161

Clearing Response Algorithmic Memory .. 3-163
Copying Response Algorithmic Commands 3-165
Filling Response Algorithmic Memory ... 3-167

High Speed Binary Pattery Transfers ... 3-170

Stimulus Mapped Binary Patterns ... 3-172
Stimulus Non-Mapped Binary Patterns ... 3-174
Record Mapped Binary Patterns .. 3-176
Record Non-Mapped Binary Patterns ... 3-178

Saving and Loading Tests ... 3-180

Binary Learn Time-Out ... 3-182
Learning Binary Tests .. 3-183

Advanced Record Triggering ... 3-184

vi SR2500 User's Manual

Rev. 05 Interface Technology

Table of Contents

Contents (continued)

Record Memory Wrapping .. 3-187
Qualifier Trigger Patterns .. 3-188
Clearning Qualifier Trigger Patterns ... 3-190
Qualifier Trigger Combinations .. 3-191
Clearing Qualifier Trigger Combinations.. 3-192
Record Filter and Control .. 3-193
Advancing Trace Sequences .. 3-195
Jumping to Trace Sequences ... 3-197
CRC Calculation Control .. 3-199
Stopping Tests from Trace Sequences ... 3-201
Clearing Trace Sequences ... 3-202
Trace Sequences Catalog ... 3-203
Querying CRC Checksums .. 3-205

Miscellaneous Commands .. 3-207

Diagnostics .. 3-208
Diagnostic Test Execution ... 3-210
Diagnostic Test Status Query .. 3-212

Status Queries, Status Interrupts and System Queries 3-214

Operation Interrupt Definition ... 3-216
Operation Condition Query ... 3-218
Questionable Status Registers ... 3-219
Status Preset .. 3-222
System Error Query ... 3-223
SCPI Version Query .. 3-224
System IDN Query .. 3-225

Bus Master Time-Out ... 3-227

Bus Master Time-Out .. 3-228

Variable Voltage I/O on the SR2500 .. 3-229

Selecting Response Threshold voltage Sets .. 3-231
Selecting Stimulus Output Voltage Sets .. 3-232

IEEE 488.2 Commands ... 3-233

SR2500 User's Manual vii

Rev. 05Interface Technology

Table of Contents

Contents (continued)

IEEE 488.2 Mandatory Commands ... 3-236

Programming Examples ... 4-1

Program Steps .. 4-1
RAM-Backed Pattern Generation .. 4-7
Using CMACROS and Data Formatting ... 4-10
Generating Algorithmic Stimulus Patterns .. 4-13
Using Real-Time Compare and Algorithmic Expcted Responses 4-19
Recording UUT Responses ... 4-26

Chapter 4
Programming Examples

viii SR2500 User's Manual

Rev. 05 Interface Technology

Table of Contents

(THIS PAGE INTENTIONALLY LEFT BLANK)

SR2500 User's Manual 1-1

Rev. 05Interface Technology

Chapter 1: General Information

�����������������	

General Information
This manual provides installation and operation information for the
Interface Technology SR2500 VXI Digital Test Subsystem Information
contained herein is intended for use by technical personnel involved in the
actual installation and operation of the subject equipment.

Arrangement of Manual

This document is comprised of five separate manuals as follows:

o SR2500 User's Manual (overall system manual)
o SR2510 User's Manual
o SR2520 User's Manual
o SR2520 Guided Probe Option User's Manual (option)
o RG2500 Rail Generator User's Manual (option)

Arrangement of Contents, This Manual

Information contained in this manual is arranged in four chapters, as
follows:

o Chapter 1 General Information
o Chapter 2 Test Programming Parameters
o Chapter 3 Programming
o Chapter 4 Programming Examples

Applicability

The information contained in this manual covers a single equipment
configuration designated SR2500 VXI Digital Test Subsystem. Differ-
ences, if any, between this equipment and the actual equipment supplied
are covered by Difference Data included at the front of this manual.

Supersedure Notice

This manual supersedes SR2500 User's Manual, Rev.04 and all previous
issues of this publication.

The SR2500 Digital stimulus/response Subsystem provides DC to 25 MHz
digital logic patterns for serial and parallel testing of digital semiconduc-
tor devices, ASICs, components, circuit boards, assemblies, and other
digital devices including complete digital systems. Based on the industry
standard VXI architecture, the SR2500 digital subsystem is comprised of
one or more dual-slot C-size modules as shown in Figure 1-1.

About This Manual

Equipment Description

SR2500 User's Manual

Interface Technology

1-2 Chapter 1: General Information

Rev. 05

The major components of the SR2500 VXI Digital Test Subsystem are the SR2510 Main Module and one or
more optional modules used to enhance or expand the subsystem. The optional modules include the SR2520
Expansion Module, the RG2500 Rail Generator, and a Guided Probe option for the SR2520 Expansion
Module.

SR2510 Main Module

The message-based SR2510 provides clocking and test sequence control functions for all I/O channels within
the SR2510 module, and for all SR2520 Expansion Modules as well. The SR2510 consists of a Timing/
Control board, up to three (3) I/O boards, up to six (6) Driver/Receiver boards (two per I/O board) and boards
for timing distribution, power distribution and interface logic for any SR2520 expansion modules, see
Figures 1-2 and 1-3. The Timing/Control board contains a 25 MHz 68EC030 microprocessor (system proces-
sor) that provides the basic user interface to the SR2500 system. The 68EC030 parses and interprets the VXI
word-serial commands and provides overall system setup and test monitoring. The SR2510 also contains a
custom control processor ASIC that provides real-time control over the test pattern sequencing. The control
processor is capable of providing sequential or nested program looping and conditional or unconditional
jumps and subroutines. Overall test timing is provided by a programmable 200 Hz to 25 MHz frequency
synthesized clock source as well as external inputs for clocks, gates, test inputs and triggers. For additional
details, refer to the SR2510 User's manual.

� � � � � � � � 	
 �� �� ��

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

����
������

���
��

�!

������

����
�	�

���������

������

	�����
����	
�

������

�����

������
�������

�!

�� � �

�"#$%&'(%
�()*+,

���������

������������

���
����

���
��

������
�����������

������
���������
������

����������������
��������� !

"���������#���� ���
�"����

�����"����� ��

Figure 1-1. SR2500 VXI Digital Test Subsystem.

SR2500 User's Manual 1-3

Rev. 05Interface Technology

Chapter 1: General Information

SR2520 Expansion Module

(See Fig 1-1) The SR2520 expansion module is a register-based companion to the SR2510 module. Each
SR2520 provides an additional 96 I/O channels, and up to five SR2520s (up to 576 channels) may be included
in a single SR2500 subsystem. Each SR2520 module has 96 output pins and 96 input pins, except in the case
of the Variable Voltage configuration, which has 96 bi-directional I/O pins. By connecting the output and
input pins together, 96 I/O channels can be realized. Each I/O channel generates digital stimulus patterns,
provides real-time comparison capabilities on the response inputs, and contains logic analyzer type triggering
and data recording functions, all at speeds up to 25 MHz.

Except in the case of the Differential ECL configuration, which has no tristate memories, each stimulus pin
contains output and tristate memories, allowing bi-directional signal paths. The response pin provides
expected response and mask ("don't care") memories, which generate the expected input pattern used for the
real-time comparison. The logic analyzer triggering and recording subsystem allows the recording of either
the actual input pattern or the results of the real-time comparison of the expected response pattern and the
input pattern (error data). Either may be saved and then later retrieved from the record memory, in much the
same way you would use a logic analyzer.

The SR2500 subsystem is designed to operate with any VXI compatible slot-0 controller that supports the
word serial protocol. The command set that controls test setup and execution is based on the SCPI-syntax
command set.

Figure 1-2. SR2510 Main Module, Exploded View Showing Major Components.

�����������	�
���	�

������	��

����	�����	�������

����	���������	�

	��������
�

��	�����	���������	

����������	��	�

����	���������	�

����	������������������	

������	�������
����������	�������
�

�	���	�	������	���	��
�������������� !�"#�

�	���	�	������	���	��
�$%���������� !�"#�

����������&��	�

����	���������	

����	���������	

SR2500 User's Manual

Interface Technology

1-4 Chapter 1: General Information

Rev. 05

SR2520 w/Guided Probe (option)

(see Fig 1-1) Guided Probe is supplied as a factory installed, add-in option to the SR2520 Expansion Module.
This option provides the user with the capaiblity to read test points (nodes) on the UUT to determine pass/fail
conditions. The guided probe is capable of testing and detecting high, low, and indeterminate states and can
also measure analog voltages. Upon determination of the pass/fail state, the guided probe stores the UUT
response along with the compare results for later readout. The probe has an active input, which minimizes
circuit loading and serves to "condition" the UUT signal before routing it to the guided probe logic. Located
on the probe body is an ENTER button used to trigger or continue test execution. For additional details, refer
to the SR2520 Guided Probe Option User's Manual.

RG2500 Rail Generator (option)

(See Fig 1-1) The RG2500 Rail Generator is a programmable power supply used to provide operating
voltages to the SR2510 and SR2520 modules whenever these modules are configured for programmable
(variable voltage) operation.

The RG2500 receives operating voltages and control commands from the host computer and supplies either
one or two SR2510 or SR2520 modules with eight individual output voltages, each of which is separately
programmable over a range of -3.0 to +7.0 Vdc. For additional details, refer to the RG2500 User's Manual.

Figure 1-3. Block Diagram, SR2510 Major Components.

Change 3

SR2500 User's Manual 2-1

Rev. 05Interface Technology

Chapter 2: Test Programming Parameters

�����������������

Test Programming Parameters
Test Programs

Fields

The SR2500 subsystem is capable of storing multiple user-defined, user-
selectable tests in memory. Each test contains complete setup information
for test size, field definitions, system timing, input and output formats,
record control and stimulus and response data. The maximum tests that
may be stored in memory is 128, or until all I/O memory is used up,
whichever occurs first. Each time a test is defined, a size (in vectors) must
be specified, which causes I/O resources to be allocated for that test. The
test size must be an even number of vectors and the actual resources
allocated is the size defined plus some internal overhead (up to 32 vec-
tors). Each test retains pointers to its own stimulus/response memory
segment, as well as its own unique settings for fields, output format, signal
conditioners, etc.

For example, if a test is defined with a size of 100, then 100 I/O vectors
are allocated to that test. The available free I/O memory is reduced by
100. This process may be repeated until either 128 tests have been
defined, or all of the available I/O memory has been used. If a test is later
deleted, then software housekeeping automatically reallocates all of the
remaining test resources to keep the unused resources in a sequential
address space. The user may select a previously defined test, for execu-
tion or modification, via a simple command. Once the user selects a test,
system access is directed to the currently active test. The user may also
query the system to determine the loaded tests and the status of all defined
tests.

Access to the test's stimulus/response memory is based on "fields." By
definition, a field is a logical group of stimulus, response or record pins.
Before data can be loaded to or queried from an SR2500 module, the user
must create a field. Fields are created by defining:

o a unique field name
o a field type
o the I/O pins associated with that field.

Field width is limited to a maximum of 32 pins. Once a field is defined,
the pins associated with that field are not dedicated to only that field. It is
possible to define many fields, each containing a pin that was previously
defined in another field, or fields. This is very useful for setting up fields
and sub-fields. For example, you may define a 4 bit "control" field and a
16 bit data field, and a third field that is 20 bits wide consisting of both
control and data. This can be very useful for display purposes, since both
control and data may be read with a single command, while retaining the
flexibility of manipulating each field independently of the other.

SR2500 User's Manual

Interface Technology

2-2 Chapter 2: Test Programming Parameters

Rev. 05

There are three basic field types:

o stimulus
o expected response (response)
o record

There are also sub-types for stimulus and response fields. Three of the
sub-types for stimulus and response fields are

o non-algorithmic
o algorithmic
o hardware

Non-Algorithmic Fields

Non-algorithmic fields generate their patterns from data stored in RAM.
For this reason they are often called RAM-backed patterns. Non-algorith-
mic fields are very flexible, since pins in a non-algorithmic field can be
assigned in any order and any MSB/LSB designation.

Algorithmic Fields

Algorithmic fields generate their patterns algorithmically from a simple
set of commands. Test sequences that ordinarily consume excessive
amounts of stimulus/response memory can be reduced to just a few
algorithmic commands. For example, the "walking bit" data pattern and
"incrementing address" patterns often used to functionally test RAM
would use proportionately large amounts of stimulus/response memory.
The larger the RAM being tested, the more RAM-backed test vectors that
would be required. Using algorithmic fields, a single vector of stimulus/
response memory can generate up to 65,536 unique address/data vectors.
By placing the algorithmic command within nested loops, literally billions
of unique address and data test vectors may be generated using only a few
actual vectors.

Because algorithmic patterns are generated in hardware, several restric-
tions exist concerning how these fields can be assigned. An algorithmic
field must consist of byte wide groups of 8, 16, 24 or 32 pins and the
MSB/LSB ordering is fixed. None of these restrictions exist for non-
algorithmic fields.

One of the algorithmic commands supported allows data to be output from
memory, exactly as a RAM-backed field works. This allows mixing of
algorithmic and RAM-backed pattern generation on the same pins, but at
different test vectors (cycles).

SR2500 User's Manual 2-3

Rev. 05Interface Technology

Chapter 2: Test Programming Parameters

Hardware Fields

Hardware type fields allow loading of data directly to I/O RAM, bypass-
ing the field pin mapping algorithms and the associated processor over-
head. By eliminating this overhead, data can be loaded to hardware type
fields faster than loading data to other field types. As already discussed
above, a pin, or group of pins, may be mapped to multiple fields. So pins
may be associated with non-hardware type fields for convenience, and
simultaneously associated with hardware type fields for improved perfor-
mance in querying and loading data patterns.

A section of stimulus/response memory may be repeatedly looped many
times, as determined by a loop count value or by various test conditions.
The loops are described as "seamless" because no extra test cycles are
required when the program jumps from the bottom of the loop to the top.
There are two loop types, word loops, which loop on a single test vector,
and start/end loops, which loop through a range of vectors. Start/end
loops may be nested two levels deep, and the nesting must be in a linear
sequence of vectors. In other words, with nested start/end loops, it is not
allowed to have the first level of looping in the main program sequence,
and the second level of looping located within a subroutine. Any number
of word loops may be placed within the start/end loop range.

Two other loop structures are provided in the SR2500 subsystem. One is
the program loop, the other is the arm count. With program loops, the
entire test program may be repeated up to 65,536 times or continuously.
The arm count defines the number of times the SR2500 will re-arm itself
and wait for a system trigger. After the trigger, the SR2500 will run
through it's entire test sequence as many times as defined with the pro-
gram loop. Then, assuming the arm count has not been reached, the
SR2500 will automatically re-arm itself. Another trigger will cause the
test to run again. This process continues until the SR2500 test has run the
number of times specified by the arm count value.

The SR2500 test program allows conditional and unconditional test
branching. During a branch, the data value on the output pins will remain
from the test vector immediately prior to the branch instruction. The user
has the option of keeping the stimulus data formatting active (useful for
keeping clocks active) or suppressing it during the branch, in which case
the output pins remain static during the branch. There are three branch
types, as follows:

CJMP | JMP

CJMP | JMP allows the test to conditionally or unconditionally branch to
any vector location within a test. Test sequencing and pattern generation
will continue from the new vector. Jumps to an odd vector require (4) test
cycles, while jumps to an even vector requires (5) cycles.

Vector Looping

Program Branching

SR2500 User's Manual

Interface Technology

2-4 Chapter 2: Test Programming Parameters

Rev. 05

CJSRoutine | JSRoutine

This command allows the test to conditionally or unconditionally branch
to a subroutine vector location within a test. Subroutines must start on a
32 vector boundary. Test sequencing and pattern generation will continue
from that vector until a return instruction is encountered. After the return,
test sequencing and pattern generation continues from the vector immedi-
ately after the vector containing the subroutine branch. Subroutines may
be nested 8 levels deep and always require (4) test cycles to branch to the
subroutine vector.

CRTSubroutine | RTSubroutine

This command initiates a conditional or unconditional return from a
subroutine. Returns are not limited to 32 vector boundaries and may
reside at any vector location. A return to an odd vector location requires
(3) test cycles, while a return to an even vector requires (4) cycles.

The SR2500 is capable of generating and recording data at rates ranging
from 200 Hz to 25 MHz. Using an external clock input supplied to the
front panel of the SR2510 module, the SR2500 can support data rates
ranging from DC to 25 MHz. By default, the SR2500 is frequency-locked
to an internal 10 MHz source. The SR2500 can also be locked to the VXI
bus 10 MHz clock (CLK10) or an external 10 MHz reference, which is
supplied to the front panel of the SR2510 module.

The SR2510 module is configured with 1 MB of dual-access memory,
which is mapped to VME A32 address space. This memory is a gateway
used for high-speed binary data transfers of stimulus, response and/or
record data to and from the SR2500 subsystem. The A32 memory may
also be used for high-speed binary block transfers of complete test setups
including control, stimulus and response data. The SR2510 module uses
the bus master mode to transfer the data to or from any SR2520 expansion
modules.

Output formatting allows the user to manipulate stimulus output data by
impressing a return-to state on the output, which is useful when generat-
ing high-speed clocks and strobes or serial data streams with a minimum
amount of stimulus/response memory.

In a non-return-to format, output formatting allows the user to delay
(skew) output signals relative to each other up to one full clock period.
This aids in meeting or testing UUT setup and hold timing requirements.

Using a return-to format, the user can control both the delay and the width
of the output format. The delay represents the point at which stimulus

Data Rates

Output Data Formatting

VME A32 Dual Access Memory

SR2500 User's Manual 2-5

Rev. 05Interface Technology

Chapter 2: Test Programming Parameters

data is applied to the output pins, relative to the beginning of the test
cycle. The width represents the duration of the output data before the data
is returned to the defined return-to state. The delay time may be defined
at any point within one system clock period. The width parameter must be
a minimum of 10 ns and may not exceed one test cycle minus 10 ns. Data
format widths may cross cycle boundaries, hence it is permissible to assert
the state in one cycle, and to hold that state into the next cycle. When the
internal clock system is used, the delay/width resolution is 12.5% of the
system clock. NOTE: The system clock operates in the range of 12.5
MHz to 25.0 MHz. Hence, resolution will vary from 10 ns to 5 ns,
respectively. The accuracy of the delay and width settings is 10 ns. When
an external clock source is used, the resolution is one-half of the external
clock period. The following formats are used to modify output data:

NRZ (Non-Return-to-Zero)

The default mode for output data formatting is NRZ. In this mode, no
additional data formatting is impressed on the outputs. The output pins
are driven to the defined state after the defined delay time, and remain in
that state until the same time in the following cycle, at which point the
pins are driven to the newly defined state. The width parameter is not
used in NRZ format. True NRZ formatting would place the delay time at
0 ns. Because the NRZ delay time may be placed at any point within the
clock cycle, NRZ may also be used for Delayed Non-Return-To-Zero
(DNRZ) formats.

RZ (Return-to-Zero)

Return-to-Zero causes the output pins to be driven to the programmed
state after the delay time and for the duration of width, and driven to "0"
during the delay time and at the end of the width setting. If the tristate
control for a pin indicates the pin should be tristated for the test cycle, the
tristate control takes priority over the pin formatting and the pin will not
be driven to the programmed state, nor return-to-zero.

RONE (Return-to-One)

The return-to-one mode causes the output pins to be driven to the pro-
grammed state after the delay time and for the duration of width, and
driven to "1" during the delay time and at the end of the width setting. If
the tristate control for a pin indicates the pin should be tristated for the test
cycle, the tristate control takes priority over the pin formatting and the pin
will not be driven to the programmed state, nor return-to-one.

RC (Return-to-Compliment)

The return-to-compliment mode causes the output to be driven to the
programmed state after the delay time and driven to its compliment state

SR2500 User's Manual

Interface Technology

2-6 Chapter 2: Test Programming Parameters

Rev. 05

at the end of the width time. Prior to the assert time (during delay), the
outputs are driven to the compliment of the programmed state for the
previous cycle. If the tristate control for a pin indicates the pin should be
tristated for the test cycle, the tristate control takes priority over the pin
formatting and the pin will not be driven to the programmed state, nor
return-to-complement.

RI (Return-to-Inhibit/Tristate)

The return-to-inhibit mode causes the output pins to be driven to the
programmed state after the delay time and for the duration of width, and
tristated during the delay time and at the end of the width setting. If the
tristate control for a pin indicates the pin should be tristated for the test
cycle, the tristate control takes priority over the pin formatting and the pin
will be tristated for the entire test cycle.

The SR2500 provides two methods of sampling and/or comparing the
UUT response data:

Edge Mode

In edge mode, UUT response data is latched (sampled) into the input
register at the defined time within the test cycle, and compared against the
expected UUT response data, masking out any bits indicated by the mask
("don't care") memory. If a compare error is detected, the Error Latch is
set. Depending on the record control settings, either the actual UUT
response data or the results of the compare -- error data -- are stored in the
record memory. Or, if the record control settings so indicate, no informa-
tion is stored in the record memory.

In the real-time compare mode, the initial expected response comparison
may be delayed a total of seven test cycles. This is to compensate for
delays external to the SR2500.

Window Mode

The window mode is used to detect glitches. Whereas the edge mode
samples the input pins (UUT response) at one instant in time, the window
mode in effect samples the inputs over a period of time. The input data
must match the expected state and must remain stable for the time dura-
tion defined. If the data does not match the expected response, or if the
data transitions (glitches) at any time within the window, the result of the
response comparison is false (assuming the respective bits are enabled for
comparison). If the record memory is programmed to store errors, the bits
with detected mismatches (glitches) are set high, even if the initial or final
state of the input matches the expected value.

Input Data Formatting

SR2500 User's Manual 2-7

Rev. 05Interface Technology

Chapter 2: Test Programming Parameters

Like the edge compare mode above, the initial expected response window
comparison may be delayed a total of seven test cycles, again, to compen-
sate for delays external to the SR2500.

The SR2500 uses several types of memory to perform specific functions.
The SR2500 can be purchased in two sizes of stimulus/response/record
memory, providing either 64K or 256K test vector depth.

Control Memory

The control memory provides the sequence instructions (program) for the
control processor, which is responsible for the overall vector sequencing
of the system. By default, a simple in-line test program of the same length
as a defined test is automatically generated. Therefore, the default number
of test vectors generated by the program is exactly equal to the length of
the test program.

More complex programs may contain looping and conditional or uncondi-
tional branches, and may be used to generate many more test vectors than
the defined length of the test program. These loop and branch instructions
are typically combined with algorithmic pattern generation to produce the
desired test vectors.

The stimulus and expected response memories are effectively addressed
by the same address counter that drives the control program. Therefore, all
stimulus and response fields, whether defined as algorithmic or non-
algorithmic, always sequence through the same number of vectors as the
control processor. The record memory is addressed in an independent and
linear sequence regardless of control program looping and branching.

Stimulus Memory

The stimulus Memories control the generation of stimulus output data.
The response memory is addressed by the control processor. For each
stimulus pin, the following memory types are available:

Output Memory. The output memory defines the logic states that are
driven to the UUT. In the non-algorithmic mode, this data is passed
directly from RAM to the output pins, via the stimulus gate array. In the
algorithmic mode, the data from the output memory is used as a literal
value that may modify the current state of the output pin. One bit of the
output memory is assigned for each bit in an output type field (OUT, OT,
ALGO and HOUT).

Tristate Memory. Tristate memory determines if the output driver for a
given output channel is enabled or disabled. One bit of this memory is
assigned for each bit of the tristate type field (TRI, OT and HTRI). The

Memory

SR2500 User's Manual

Interface Technology

2-8 Chapter 2: Test Programming Parameters

Rev. 05

driver is enabled for the cycle if the corresponding tristate bit contains a
value of "0". The driver is disabled (tristated) for the cycle if the corre-
sponding tristate bit contains a value of "1".

Stimulus Algorithmic Memory. The stimulus algorithmic memory
contains instructions that control the generation of algorithmic output data
patterns. Four bits of this memory are used for each byte of algorithmic
output type field (ALGO). These four bits determine which of the 16
possible algorithmic operations are to be carried out on that group of eight
output bits. Non-algorithmic fields automatically set these bits to "0",
which is the equivalent of the non-algorithmic command.

Response Memory. The response memories control the generation of the
expected data patterns that are used in real-time compares. The results of
the comparison may:

• Be returned at the end of the test
• Be used to control the test program sequence
• Be used to determine starting and stopping of record memory
• Be used to determine starting and stopping of CRC sampling

The response memory is addressed by the control processor. For each
input pin, the following response memories are available:

Expect Memory

The expect memory defines the logic state expected to be returned from
the UUT. In the non-algorithmic mode, the data in RAM is directly used
for the comparison operation. In the algorithmic mode, the data from the
expect memory is used as a literal value that may modify the current
expected state. One bit of this memory is assigned for each bit in an
expect type field (EXP, ED, ALGE and HEXP).

Don't Care Memory

The "don't care" (mask) memory, determines if the UUT response for a
given input channel is compared against the expected state of that channel
for the current test vector. One bit of this memory is assigned for each bit
in a "don't care" type field (DON, ED, HDON). The input value is
compared to the expected value if the corresponding bit in the "don't care"
memory is programmed with a value of 0. The result of the compare is
ignored (masked) if the corresponding "don't care" bit is programmed with
a value of 1. When the record error data criteria is selected, a value of 0 is
stored to record memory for each bit where the corresponding bit in the
"don't care" memory is set to 1.

The "don't care" memory is also used as a mask for enabling signature
analysis checksum (CRC) calculations on the individual input pins.

SR2500 User's Manual 2-9

Rev. 05Interface Technology

Chapter 2: Test Programming Parameters

Response Algorithmic Memory

The response algorithmic memory contains instructions that control the
generation of algorithmic expected data patterns. Four bits of this
memory are used for each byte of expected response type field. These
four bits determine which of the 16 possible algorithmic operations are to
be carried out on that group of eight expect bits. Non-algorithmic fields
automatically set these bits to "0", which is the equivalent of the non-
algorithmic command.

The record memory's function is like that of a logic analyzer, i.e., record-
ing data. While the record memory is bundled under the same command
subsystem as the response memories, it functions as a wholly separate
subsystem from stimulus and response. For this reason it has not been
included under the response subsystem in this technical description.

The user may elect to store to record memory in one of two ways ... either
the data values returned by the UUT, or the result of a bit-wise comparison
between the data from the UUT and the expected data generated by the
expect/"don't care" memories (errors). This function is selected with the
filter parameter in the Record:Trace command subsystem. In the store
error data mode, a value of "1" is stored for each input bit that does not
match the expected value. If the input field is operating in the window
mode, a value of "1" is stored for each bit in which a pattern mismatch
occurs or for each bit where a mismatch or a glitch was detected. If the
"don't care" bit is set to "1", a value of "0" is stored regardless of whether
a compare mismatch or a glitch occurs.

Record memory may only be loaded as a result of recording UUT re-
sponses. It may be queried by the user or used to copy recorded results to
expected memory (response learning), but may not be directly loaded by
the user.

Unlike the stimulus and response memories, the record memory is ad-
dressed and controlled independently of the control processor. The user
may selectively store or not store, based on the evaluation of preset trigger
conditions and qualifiers. The record operations, as well as the sampling
of the CRC (signature analysis) registers, are independently controlled by
a 16 level record state machine. This state machine allows for simple or
complex triggering capabilities similar to those found in a conventional
logic analyzer.

The SR2500 can perform hardware real-time signature analysis on the
data stream of all input pins during qualified cycles. Signature analysis is
performed by calculating a 16 bit Cyclic Redundancy Check (CRC) value
for each input pin. The results of the CRC calculation are stored in a 16

Record Memory

Record Memory and Signature
Analysis Control

SR2500 User's Manual

Interface Technology

2-10 Chapter 2: Test Programming Parameters

Rev. 05

bit CRC register, one register for each input pin. CRC calculations are
performed when enabled by the record control state machine and when the
corresponding "don't care" bit is set to "0". The CCITT standard commu-
nication polynomial is used to perform the CRC calculations and the CRC
value is the 16 bit remainder produced by dividing the input stream by the
following polynomial, using Galois field arithmetic:

Gx = 1 + x5 + x12

The SR2500 programming commands are based on the Standard Com-
mands for Programmable Instruments (SCPI) syntax and are used to set up
and query all system functions and execute all run-time controls.

For complete programming instructions, refer to Chapter 3, "Program-
ming."

Program Languages

SR2500 User's Manual 3-1

Rev. 05Interface Technology

Chapter 3: Programming

C H A P T E R 3

Programming
SCPI Command Syntax The SR2500 is controlled via a set of word serial commands patterned

after the 1993 edition of the Standard Commands for Programmable
Instruments (SCPI). To accommodate the robust feature set of the
SR2500, many additional commands have been added. Although these
additional commands are not defined in SCPI, they do follow the rules and
syntax of SCPI commands and provide access to the SR2500’s unique
features.

SCPI commands are defined in a tree structure starting with a basic
command function, called the command root. The tree’s functionality is
expanded by adding command decriptors, known as command branches.
The final command parameter is called a command leaf. With this struc-
ture, commands may be logically grouped together based on functionality.
Commands defined by SCPI are denoted by the word “SCPI”. The
commands that follow the SCPI syntax but are not defined by SCPI are
denoted by the word “NON-SCPI.”

SCPI branches and leaf commands use the colon (:) character as a prefix,
denoting descent into the command tree by one level. Root commands
have no prefix. Some SCPI command paths are quite lengthy, and to
avoid typing in the full command path, several short-cuts are available.
For example, some SCPI command words are optional. These commands
are listed in brackets []. Also, each SCPI command has a long and an
abbreviated format. The required abbreviated format is shown in capital
letters, while the characters making up the optional long format are shown
in lowercase. The following two command strings are identical in func-
tionality:

STIMULUS:CMACRO:LABEL:VECTOR 10;REDEFINE START
STIM:LAB:VEC 10;RED START

Another shortcut is the semi-colon character (;). Using a semi-colon
allows the user to remain at the same level in the command path and enter
multiple parameter values, rather than having to re-enter the entire com-
mand path for each value entered. In the following example, the first two
commands may be replaced by the third example:

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD D16_09;CLEAR
RECORD:VECTOR 1;COUNT ALL;DATA:FIELD D08_0;CLEAR
RECORD:VECTOR 1;COUNT ALL;DATA:FIELD D16_09;CLEAR;FIELD
D08_0;CLEAR

3-2 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Command words take three forms, ROOT, BRANCH, and LEAF. The
ROOT is the beginning of a command, i.e. the first word in a com-
mand string. Branches are the connecting paths between the ROOT
and the LEAF. Branches may or may not have parameters associated
with them, or may have a suffix, usually a channel indicator. The
LEAF terminates the command string and may or may not have
parameters associated with it.

Indicates commands which do not have parameters.

Indicates commands with parameters.

Commands that are followed by a question mark in parenthesis
indicate a command format supporting both a command and a com-
mand query.

Command strings followed by a question mark without parenthesis
indicates a command query only.

Command characters displayed in uppercase are required characters.

Command characters displayed in lowercase are optional characters.

Required parameter or suffix.

Optional command or parameter.

Repeat as many times as required.

The parameter value entered must be within the range of min to max,
inclusive.

Acceptable choices are aaa OR bbb.

Response from SR2500.

command

Table 3-1. SCPI Command Key.

UPPERCASE

command

Since the parameters FIELD and CLEAR are at the same level within the RECORD command subsystem,
the semicolon may be used to omit all of the path command words up to the level where FIELD and
CLEAR are specified.

Table 3-1 explains the characters and symbols used in this chapter to represent SCPI Command Syntax.

Chapter 3 is divided into three major sections with each of these further divided into minor sections. For
each minor section, commands are presented in the order in which they should be used and not necessar-
ily by subsystem grouping. Each minor section is introduced with a brief description of the commands
that will be covered in the section.

command

command(?)

command?

lowercase

<required>

[option]

{repeat}

(min-max)

aaa | bbb

response

SR2500 User's Manual 3-3

Rev. 05Interface Technology

Chapter 3: Programming

Basic Programming This section is divided into the following sub-sections:

� Defining Tests ...pg 3-4
� Global Test Parameters ..pg 3-12
� Field Definitions ..pg 3-30
� Loading and Querying Test Vectorspg 3-42
� Trace TMACRO's ...pg 3-78
� Run Time Commands ..pg 3-87
� Reading Recorded Data ...pg 3-94

Note
The basic commands required for defining an SR2500 test
and entering Stimulus/Response patterns are discussed in
the "SR2500 System Manual." You should become thor-
oughly familiar with those commands and procedures be-
fore proceeding with the programming instructions contained
in this section.

3-4 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

The Test subsystem allows the user to allocate available resources to
create a test program and to query defined tests to determine available
resources. A maximum of 128 unique test programs can be defined within
the system at any given time, up to the available SR2500 I/O memory size
(256K maximum). Each time a new test is defined, system resources are
dynamically allocated. If a defined test is deleted, system resources are
dynamically reallocated to maintain a linear block of unused memory.

Some parameters, such as test frequency, system trigger and CMACRO
sequence programs, are stored in memory located in the SR2510 Timing /
Control / I/O Module. Stimulus and expected response data patterns are
stored in memory located on the I/O boards. Only one test may be active
at a time. Reference the "System" command subsystem for information
about activating inactive tests.

Defining Tests

SR2500 User's Manual 3-5

Rev. 05Interface Technology

Chapter 3: Programming

:DELete

[:DEFine]TEST :SIZE

:NAME

:CATalog?

:STATus?

:FREE?

Program Loops
Frequency

Period
Clock Source

Clock Slope
EXT Clock Threshold Level

Gate Source
EXT Clock Threshold Level

Gate Polarity
10 MHz Reference

System Trigger
EXT Trigger Slope

Trigger Level
Field Radix

Arm Data Mode
Arm Count

OUTput Field
TRIstate Field

OT Field
EXPect Field

DONtcare Field
ED Field

RECord Field
ALGOutput Field
ALGExpect Field

1
200 Hz
40 ns

-5.00 V

-5.00 V

-5.00 V

1

65,525
25 MHz
5.0 ms

4.99 V

4.99 V

4.99 V

1,000,000

1
25 MHz
40 ns
INT
POS

1.20 V
INT

1.20 V
NORMal

INT
BUS
POS

1.20 V
HEX
OFF

1
All 0's
All 1's
All X's
All 0's
All 1's
All X's

Nonalgorithmic
Nonalgorithmic

CONT

INT/EXT/SSTEP
POS/NEG

MIN/MAX/DEF
INT/EXT

MIN/MAX/DEF
NORM/INV

INT/EXT/CLK10
BUS/EXT/TTLT

POS/NEG
MIN/MAX/DEF

HEX/BIN
ON/OFF

ITEM MIN MAX DEFAULT PARAMETERS

SR2500 Default Parameters

3-6 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Test Definition (NON-SCPI)

The TEST:DEFINE:SIZE command defines a test and allocates memory
on the SR2500 I/O cards. The memory is allocated across all SR2500 I/O
cards using the same vector locations. SR2500 I/O card memory is
initialized to default values. Every other parameter in the test is also
initialized to default values. The maximum number of tests which may be
defined in the SR2500 is 128, or until all I/O vectors resources have been
used.

name = Any alphanumeric string and ‘_’ (max 8 characters).

The test size must be an even number with a minimum value of two (2)
vectors and a maximum value of the remaining available free memory.
See TEST:FREE? command to query the available free memory.

Note
If no tests have been defined, the maximum memory available is
65,500 vectors for a 64K vector card, or 262,108 vectors for a 256K
vector card.

test_size = (2 to free_vectors)

TEST:DEFINE MEM_1:SIZE 1000
TEST:DEF MEM_2:SIZE 1000
TEST MEM_3:SIZE 1000

[:DEFine] <name>

Parameter Definition

:SIZE <test_size>

[:DEFine]TEST :SIZE

Parameter Definition

Examples

SR2500 User's Manual 3-7

Rev. 05Interface Technology

Chapter 3: Programming

The TEST:NAME:DELETE command deletes a specific test from the test
directory. The deletion frees the allocated memory from the I/O cards and
shuffles memory to keep all memories contiguous. The physical memory
location for each of the remaining tests may change.

name = Any alphanumeric string and ‘_’ (max 8 characters).

ALL = All defined test names.

Causes the tests specified to be deleted from memory. Memory is reallo-
cated (shuffled) so unused are arranged in a contiguous address space.

TEST:NAME MEM_1:DELETE
TEST:NAME MEM_2:DEL
TEST:NAME ALL:DEL

Test Deletion (NON-SCPI)

TEST :DELete:NAME

:NAME <name | ALL>

Parameter Definition

:DELete

Examples

3-8 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Test Definition Catalog (NON-SCPI)

The TEST:NAME:CATALOG? query command returns the test name and
test size parameters of a previously defined test.

name = Any alphanumeric string and ‘_’ (max 8 characters).

ALL = All defined test names.

name test_size{;name test_size}

name = Any alphanumeric string, including underscores ‘_’ (max 8
characters).

test_size = (2 - 65500) or (2 - 262108)

TEST:NAME MEM_1:CATALOG?
MEM_1 8192

TEST:NAME ALL:CAT?
MEM_1 8192;MEM_2 4096;MEM_3 2048;MEM_4 1024

TEST :NAME :CATalog?

:NAME <name | ALL>

Parameter Definition

:CATalog?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-9

Rev. 05Interface Technology

Chapter 3: Programming

(NON-SCPI)
The TEST:NAME:STATUS? query command returns the status of the
specified test.

name = Any alphanumeric string, including underscores ‘_’ (max 8
characters).

ALL = All defined test names.

name state,error, stimulus_vector,trace_sequence, vectors_recorded
{;name,state,error,stimulus_vector,trace_sequence,vectors_recorded}

name = Any alphanumeric string, including underscores ‘_’ (max 8
characters).

state = IDLE | STOPPED | ARMED | RUNNING

IDLE - The test is idle. The user can set up and query the hardware.
STOPPED - A transitional state. After a test completes, the SR2500
briefly enters the stopped state and then automatically cycles to the
idle state. Because of the brief time the SR2500 is in the stopped
state, this state will usually not be reported.
ARMED - The test is armed and waiting for a system trigger. The
user cannot set up or query the hardware.
RUNNING - The hardware is running. The user cannot set up or
query the hardware.

error = 1 for compare errors, 0 for no compare errors

stimulus_vector = current stimulus vector, modulus 2

trace_sequence = current trace sequence as defined by the
RECORD:TRACE:SEQUENCE command. This number is invalid when
RECORD:TRACE:TMACRO is used.

vectors_recorded = total number of vectors recorded. This information is
only available after the test has completed.

TEST:NAME MEM_1:STATUS?
MEM_1 ARMED,0,1000,1,0

TEST:NAME ALL:STAT?
MEM_1 IDLE,0,1000,1,256;MEM_2,RUNNING,0,1000,1,0

TEST :NAME :STATus?

Test Definition Status Query

:NAME <name | ALL>

:STATus?

Parameter Definition

Response

Parameter Definition

Examples

3-10 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Free Vector Space Query (NON-SCPI)

TEST :FREE?

The TEST:FREE? query command returns the amount of free I/O vectors
remaining in the system that have not been allocated to defined tests.

free_vectors

The total number of remaining free vectors not allocated to defined tests.

free_vectors = (2 - 65500) or (2 - 262108)

TEST:FREE?
15384

:FREE?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-11

Rev. 05Interface Technology

Chapter 3: Programming

THIS PAGE INTENTIONALLY LEFT BLANK

3-12 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Global Test Parameters Global Test Parameters, grouped under several command subsystems,
allow the user to define system parameters that are unique to a Test Name.
Each time a new test is defined, system resources are dynamically allo-
cated and set to their default states. If a defined test is later deleted,
system resources are dynamically reallocated to maintain a linear block of
unused memory.

Some parameters, such as test frequency, system trigger and CMACRO
programs are stored in memory located in the SR2510 module. Stimulus
and expected response data patterns are stored in memory located both on
the SR2510 and SR2520 modules.

SR2500 User's Manual 3-13

Rev. 05Interface Technology

Chapter 3: Programming

:TEST(?)SYSTem

:PROGramloop(?)

:FREQuency(?)

:CLOCk

:GATEd

:SOURce(?)

:SLOPe(?)

:LEVel(?)

:SOURce(?)

:POLarity(?)

:LEVel(?)

SOURce :[SOURce](?):[ROSCillator]

TRIGger [:SYSTem] :SOURce(?)

:SLOPe(?)

:LEVel(?)

:PERiod(?)

:PLL(?)

3-14 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Selecting the Active Test (NON-SCPI)

:TEST(?)SYSTem

:TEST <name>

Examples

The SYSTem:TEST command activates the specified test name for both
editing and test execution. The SYSTem:TEST? query command returns
the current active test.

name = Any alphanumeric string and ‘_’ (max 8 characters)

SYST:TEST RAM_TEST

name

name = Any alphanumeric string and ‘_’ (max 8 characters)

SYST:TEST?
 RAM_TEST

Parameter Definition

Examples

Parameter Definition

Response

:TEST?

SR2500 User's Manual 3-15

Rev. 05Interface Technology

Chapter 3: Programming

The SYSTem:PROGramloop command defines the number of iterations
the test program will execute after each trigger event occurs. The
SYSTem:PROGramloop? query command returns the loop count of the
active test.

count = A numeric value from 1 to 65535. The default value for count is
1.

MIN = 1
MAX = 65,535
DEFault = 1

CONTinuous = For continuous looping of test program execution.

Note
If CONTinuous is selected, the ABORt command must be used to
stop the test program.

SYSTEM:PROGRAMLOOP CONTINUOUS
SYST:PROG 100

count

count = A numeric value from 1 to 65535 or CONTinuous for continuous
looping of test program execution.

SYSTEM:PROGRAMLOOP?
 100

SYST:PROG?
CONT

Setting the Program Loop Count (NON-SCPI)

SYSTem :PROGramloop(?)

:PROGramloop <count | CONTinuous>

Parameter Definition

Examples

:PROGramloop?
Response

Parameter Definition

Examples

3-16 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Setting the Test System Frequency (NON-SCPI)

The SYSTem:FREQuency command defines the clock rate of the test
program clock. The test program will execute at the specified clock rate
also commonly referred to as vector rate or data rate. This command
performs the same function as the SYSTem:PERiod command. The
system frequency can be specified as a floating point numeric or in
scientific notation. The system frequency may also be represented by the
literal string MIN, MAX, or DEFault. The SYSTem:FREQuency? query
command returns the value of the test program clock.

hertz = (200.00Hz - 25000000.00Hz) Values can be specified as a floating
point numeric or in scientific notation using exponential values. Optional
Hz, kHz, and MHz suffixes can be used for engineering unit multipliers.
The default engineering unit is Hz.

MIN = 200 Hz
MAX = 25 MHz
DEFault = 25 MHz

SYSTEM:FREQUENCY DEFAULT
SYST:FREQ 15.0e6
SYSTEM:FREQ 15MHZ

hertz

hertz = The clock frequency specified in Hz using scientific notation
values from 2.000000e+02 to 2.500000e+07.

SYSTEM:FREQUENCY?
 1.500000e+07

SYST:FREQ?
1.500000e+07

:FREQuency(?)SYSTem

:FREQuency <hertz | MIN | MAX | DEFault>

Parameter Definition

Examples

:FREQuency?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-17

Rev. 05Interface Technology

Chapter 3: Programming

:PERiod(?)SYSTem

Setting the Test System Period (NON-SCPI)

The SYSTem:PERiod command sets the clock period of the test program
clock. The test program will execute at the specified clock period also
commonly referred to as vector rate or data rate. This command performs
the same function as the SYSTem:FREQuency command. The system
period can be specified as a floating point numeric or in scientific nota-
tion. The system period may also be represented by the literal string MIN,
MAX, or DEFault. The SYSTem:PERiod? query command returns the
period value of the test program clock.

seconds = (40.0 ns to 5.0 ms). Values can be specified as a floating point
numeric or in scientific notation using exponential values. Optional s, ms,
ms, and ns suffixes can be used for engineering unit multipliers. The
default engineering unit is s (seconds).

MIN = 40 ns
MAX = 5.0 ms
DEFault = 40 ns

SYSTEM:PERIOD MAX
SYST:PER 2.5e-3
SYSTEM:PER 200ns

seconds

seconds = The clock period specified in seconds using scientific notation
values from 5.000000e-03 to 4.000000e-08.

SYSTEM:PERIOD?
 2.500000e-3

SYST:PER?
 2.500000e-3

Parameter Definition

:PERiod <seconds | MIN | MAX | DEFault>

Examples

:PERiod?

Response

Parameter Definition

Examples

3-18 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

:PLL(?)SYSTem

Setting the System Clock Frequency (NON-SCPI)

SYSTem:PllFreq,Divider The PllFreq is the value to set the System Clock to, range 12.5 MHz to 25
MHz where Divider is the value to divide the system clock by range 1 to
65535 (see Chapter 2, Frequency Resolution for further details.

Returns the values for the System Clock and the Divider

The following algorithm is used within the SR2510 to calculate the correct
SYSTEM_CLOCK and divisor values.

SYSTEM_CLOCK = the actual frequency of the System Clock

DIVIDER = the actual divide-by value (1 - 65,535)

DESIRED_FREQ = the frequency requested by the user, using the
SYST:FREQ or SYST:PER commands

START_FREQ = 12.5 MHz, the lower bound of the SYSTEM_CLOCK

STOP_FREQ = 25 MHz, the higher bound of the SYSTEM_CLOCK

TRIAL_DIV = the working divide-by value (1 - 65,535)

TRIAL_CLOCK = the working value for SYSTEM_CLOCK

TRIAL_FREQ = the working value for the vector frequency.

ACTUAL_FREQ = the calculated frequency of the vector cycles,

ACTUAL_FREQ = SYSTEM_CLOCK / DIVIDER

FREQ_STEP = 1.25 kHz, the resolution of the SYSTEM_CLOCK

If the DESIRED_FREQ is less than 12.5 MHz, this algorithim starts by
picking the lowest possible TRIAL_DIV (Steps 1-5). Then, it calculates
the TRIAL_CLOCK and adjusts it to the nearest FREQ_STEP (Steps 6-
8). Then, using the TRIAL_CLOCK and TRIAL_DIV, calculates the
TRIAL_FREQ and compares it to the DESIRED_FREQ (steps 13-20). If
the difference is less than .001%, we are done (steps 26-29). If not,
TRIAL_DIV is incremented by 1 and the process is repeated (steps 21-
25). If no TRIAL-FREQ is within .001%, the closest is selected. If the
DESIRED_FREQ is 12.5 MHz or greater, the ACTUAL_FREQ is calcu-
lated by rounding the DESIRED_FREQ to the nearest 1.25 kHz step (steps
30-21).

SYST:PLL?

SR2500 User's Manual 3-19

Rev. 05Interface Technology

Chapter 3: Programming

For DESIRED_FREQ less than 12.5 MHz.

1. TRIAL_DIV = (INT32)(START_FREQ / DESIRED_FREQ)

2. WHILE ((TRIAL_DIV * DESIRED_FREQ) < START_FREQ)

3. {

4. TRIAL_DIV = TRIAL_DIV + 1

5. }

6. TRIAL_CLOCK = TRIAL_DIV * DESIRED_FREQ

7. steps = (INT32)(((TRIAL_CLOCK - START_FREQ) / FREQ_STEPS) + .05)

8. TRIAL_CLOCK = START_FREQ + (FREQ + STEP * steps)

9. save_div = TRIAL DIV

10. save_diff = TRIAL_FREQ - DESIRED_FREQ

11. WHILE (TRIAL_CLOCK <= 25 MHz && TRIAL_DIV < 65536)

12. {

13. TRIAL_FREQ = TRIAL_CLOCK / TRIAL_DIV

14. diff = TRIAL_FREQ - DESIRED_FREQ

15. IF (ABSOLUTE(diff) <= ABSOLUTE(save_diff))

16. {

17. save_diff = diff

18. save_div = TRIAL_DIV

19. IF (ABSOLUTE(1-(TRIAL_FREQ / DESIRED_FREQ)) <.00001) GOTO STEP 26

20. }

21. TRIAL_DIV = TRIAL_DIV + 1

22. TRIAL_CLOCK = TRIAL_DIV * DESIRED_FREQ

23. steps = (INT32)(((TRIAL_CLOCK - START_FREQ) / FREQ_STEPS) + .05)

24. TRIAL_CLOCK = START_FREQ + (FREQ_STEP) * steps)

25. }

26. DIVIDER = save_div

27. SYSTEM_CLOCK = DIVIDER * DESIRED_FREQ

28. steps = (INT32)(((SYSTEM_CLOCK - START_FREQ) / FREQ_STEP) + .05)

29. SYSTEM_CLOCK = START_FREQ + (FREQ_STEP * steps)

For DESIRED_FREQ greater than or equal to 12.5 MHz

30. DIVIDER = 1

31. steps = (INT32)(((DESIRED_CLOCK - START_FREQ) / FREQ_STEP) + .05)

32. SYSTEM_CLOCK = START_FREQ + (FREQ_STEP * steps)

Example: SYST:PLL 25e6,1000
SYST:PLL 25MHz,1000
SYS:PLL?
2.500000e+07,1000

3-20 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Selecting the System Clock Source (NON-SCPI)

SYSTem :SOURce(?):CLOCk

The SYSTem:CLOCk:SOURce command selects the source of the test
program clock. The default clock source is the internal clock on the
SR2510 Timing/Control Board. The SYSTem :CLOCk:SOURce? query
command returns the source of the test program clock

INTernal = (default) The internal clock source from the SR2510 Timing/
Control Board.

EXTernal = The user supplied signal into the front panel "CLOCK IN"
connector on the SR2510 Timing/Control Board.

Note

When external clock is selected the test will execute at the rate of the exter-
nal clock. The SYSTem:FREQuency or SYSTem:PERiod parameters are
meaningless and cannot be modified. Also, the output format for all stimu-
lus fields may be set to any of the available types (NRZ, RZ, RONE, RCOMP,
RI), however, edge timing is limited to either the positive or negative edge
of the external clock. The same timing restriction applies to edge and win-
dow sample clocks. See STIMulus:CONDitioner:OFORmat command for
selecting the positive and negative clock edges. See
RECord:CONDitioner:SAMPLE command for selecting the positive and
negative clock edges of response/record fields.

SSTEP = The Single Step function is used to output one vector at a time.
The INITiate command is used to advance to the next vector in the se-
quence.

SYSTEM:CLOCK:SOURCE INTERNAL
SYST:CLOC:SOUR SSTEP

INT | EXT | SSTEP

INT = The internal clock source from SR2510 Timing/Control Board.
EXT = The user supplied signal into the front panel "CLOCK IN" connec-
tor on the SR2510 Timing/Control Board.
SSTEP = The Single Step function is used to output one vector at a time.

SYSTEM:CLOCK:SOURCE?
EXT

SYST:CLOC:SOUR?
INT

:SOURce <INTernal | EXTernal | SSTEP>

Parameter Definition

Examples

:SOURce?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-21

Rev. 05Interface Technology

Chapter 3: Programming

Selecting the Slope of the External Clock (NON-SCPI)

The SYSTem:CLOCk:SLOPe command selects the active edge or slope of
the External Clock source. This command allows data vectors to be
clocked out (output) on either the positive slope (rising edge) or the
negative slope (falling edge) of the external clock. The default clock
slope is the positive slope of the External Clock. The SYSTem
:CLOCk:SLOPe? query command returns the active slope of the External
Clock

POSitive = (default) Allows vector data to be "clocked out" on the rising
edge of the external clock.

NEGative = Allows vector data to be "clocked out" on the falling edge of
the external clock.

Note
Selecting the negative slope as the active edge will invert the NRZ
delay values for data formatting. See STIMulus:CONDitioner:
OFORmat command for selecting the positive and negative clock
edges for the NRZ format delays.

SYSTEM:CLOCK:SLOPE POSITIVE
SYST:CLOC:SLOP NEG

POS | NEG

POS = Vector data will be "clocked out" on the rising edge of the external
clock.

NEG = Vector data will be "clocked out" on the falling edge of the
external clock.

SYSTEM:CLOCK:SLOPE?
POS

SYST:CLOC:SLOP?
NEG

:SLOPe <POSitive | NEGative>

Parameter Definition

Examples

:SLOPe?

Response

Parameter Definition

Examples

SYSTem :SLOPe(?):CLOCk

3-22 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Setting the External Clock Threshold Level (NON-SCPI)

The SYSTem:CLOCk:LEVel command sets the voltage threshold level of
the External Clock source. The voltage level can be entered as a floating
point numeric or in scientific notation. The voltage threshold may also be
represented by the literal string MIN, MAX, or DEFault. The
SYSTem:CLOCk:LEVel? query command returns the value of the voltage
threshold of the External Clock.

volts = (-5.00V to +4.99V) Values can be specified as a floating point
numeric or in scientific notation using exponential values. Optional V,
MV, and UV suffixes can be used for engineering unit multipliers. The
default engineering units is V (volts).

MIN = -5.00V
MAX = 4.99V
DEFault = 1.20V

SYSTEM:CLOCK:LEVEL 20e-1V
SYST:CLOC:LEV 2.0V

volts

volts = The voltage threshold setting specified in volts using scientific
notation values from -5.000000e+00 to 4.990000e+00.

SYSTEM:CLOCK:LEVEL?
2.000000e+00

:LEVel:<volts | MIN | MAX | DEFault>

Parameter Definition

Examples

:LEVel?

Response

Parameter Definition

Examples

SYSTem :LEVel(?):CLOCk

SR2500 User's Manual 3-23

Rev. 05Interface Technology

Chapter 3: Programming

Selecting the System Gate Source (NON-SCPI)

The SYSTem:GATE:SOURce command selects the source of the test
program gate. The default gate source is the internal gate on the SR2510
Timing/Control Board, which is always enabled. When the external gate
source is selected, the test program clock can be enabled/disabled by the
user supplied signal on the "GATE IN" connector on the front panel of the
SR2510 Timing/Control Board. While the external gate is enabled, the test
program clock operates normally. When the external gate is disabled, the
test program clock will immediately halt and the logic state of current data
vector will be held on the output pins. When the external gate is once
again enabled, the test program will continue its test sequence. The
SYSTem:GATE:SOURce? query command returns the source of the test
program gate.

INTernal = (default) The internal gate source from the SR2510 Timing/
Control Board.

EXTernal = The user supplied signal into the front panel "GATE IN"
connector on the SR2510 Timing/Control Board.

SYSTEM:GATE:SOURCE INTERNAL
SYST:GATE:SOUR EXT

INT | EXT

INT = The internal gate source from the SR2510 Timing/Control Board.

EXT = The user supplied signal into the front panel "GATE IN" connector
on the SR2510 Timing/Control Board.

SYSTEM:GATE:SOURCE?
EXT

SYST:GATE:SOUR?
INT

SYSTem :SOURce(?):GATE

:SOURce <INTernal | EXTernal>

Parameter Definition

Examples

:SOURce?

Response

Parameter Definition

Examples

3-24 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Setting the External Gate Threshold Level (NON-SCPI)

:GATESYSTem :LEVel(?)

The SYSTem:GATE:LEVel command sets the input voltage threshold of
"GATE IN". The voltage level can be entered as a floating point numeric
or in scientific notation. The voltage threshold may also be represented by
the literal string MIN, MAX, or DEFault. The SYSTem:GATE:LEVel?
query command returns the value of the voltage threshold of the external
"GATE IN".

volts = (-5.00V to +4.99V) Values can be specified as a floating point
numeric or in scientific notation using exponential values. Optional V,
MV, and UV suffixes can be used for engineering unit multipliers. The
default engineering unit is V (volts).

MIN = -5.00V
MAX = 4.99V
DEFault = 1.20V

SYSTEM:GATE:LEVEL 20e-1V
SYST:GATE:LEV 2.0V

volts

volts = The voltage threshold setting specified in volts using scientific
notation values from -5.000000e+00 to 4.990000e+00.

SYSTEM:GATE:LEVEL?
2.000000e+00

:LEVel:<volts | MIN | MAX | DEFault>
Parameter Definition

Examples

:LEVel?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-25

Rev. 05Interface Technology

Chapter 3: Programming

Selecting the Polarity of the External Gate (NON-SCPI)

The SYSTem:GATE:POLarity command selects the active logic level of
"GATE IN". The default gate polarity is the NORMal polarity. The
SYSTem:GATE:POLarity? query command returns the active logic level
of the external "GATE IN" signal.

NORMal = (default) A "GATE IN" level above the voltage threshold
enables the test program clock, a "GATE IN" level below the voltage
threshold disables the test program clock.

INVerted = A "GATE IN" level below the voltage threshold enables the
test program clock, a "GATE IN" level above the voltage threshold
disables the test program clock.

SYSTEM:GATE:POLARITY NORMAL
SYST:GATE:POL INV

NORM | INV

NORM = (default)

SYSTem :POLarity(?):GATE

:POLarity<NORMal | INVerted>

Parameter Definition

Examples

:POLarity?

Response

Parameter Definition

Examples SYST:GATE:POL?
NORM

3-26 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Selecting the Reference Oscillator Source (SCPI 19.16.3)

:[ROSCillator]SOURce :[SOURce](?)

The SOURce:ROSCillator:SOURce command selects the source of the 10
MHz reference for the Phased Lock Loop Oscillator. The internal clock
on the SR2510 Timing/Control Board is the default 10 MHz reference
source. The SOURce:ROSCillator:SOURce? query command returns the
source of the 10 MHz reference.

INTernal = (default) The internal 10 MHz reference source on the SR2510
Timing/Control Board. The accuracy of the internal reference is ± 200
ppm with less than 50 ps of short term peak-to-peak jitter. The INTernal
clock is the default 10 MHz reference.

EXTernal = The user supplied clock into the front panel "10MHz REF
IN" connector on the SR2510 Timing/Control Board. The maximum
frequency deviation of the external reference clock must be less than 1%
and the short term peak-to-peak jitter must be less than 200 ps.

CLK10 = The CLK10 is a 10 MHz differential ECL clock provided by
the Slot-0 and distributed to slots 1-12 on the P2 connector. The CLK10
reference has an accuracy better than ±100 ppm (0.01%) as specified by
the VXI Specification.

SOURCE:ROSCILLATOR:SOURCE EXTERNAL
SOUR CLK10

INT | EXT | CLK10

INT = The internal 10 MHz reference source from the SR2510 Timing/
Control Board.

EXT = The user supplied clock into the front panel "10MHz REF IN"
connector on the SR2510 Timing/Control Board

CLK10 = The CLK10 ECL clock provided by the Slot-0 and distributed
to slots 1-12 on the P2 connector

SOURCE:ROSCILLATOR:SOURCE?
CLK10

SOUR?
INT

Parameter Definition

Examples

Response

Parameter Definition

Examples

:SOURce <INTernal | EXTernal |CLK10>

:SOURce?

SR2500 User's Manual 3-27

Rev. 05Interface Technology

Chapter 3: Programming

The TRIGger:SYSTem:SOURce command selects the source of the test
system trigger. The test system trigger is used to begin the execution of
the active test program. The test system trigger allows the SR2500 test
program execution to be synchronized with the VXI backplane or an
external trigger signal. The test system trigger may also be used as a loop
condition for the single vector word looping (WLoopuntil) and multiple
vector word looping (SLoopuntil) CMACRO instructions. See the
STIMulus:CMACro:DEFine command for additional information on
vector word looping. The TRIGger:SYSTem:SOURce? query command
returns the source of the test system trigger.

Note
The SR2500 system must be in the "armed state" before the test
system trigger can be activated to begin the test program. See the
INITiate command for "arming" the SR2500 system.

BUS = (default) The '*TRG' IEEE 488.2 command or the 'TRIG' VXI
Word Serial command.
EXTernal = The user supplied signal into the front panel "TRIGGER IN"
connector on the SR2510 Timing/Control Board.
TTLT<0-7> = The TTL Trigger lines 0-7 provided on the P2 connector of
the VXI Bus.

TRIGGER:SYSTEM:SOURCE BUS
TRIG:SOURCE EXT
TRIG:SOUR TTLT2

BUS | EXT | TTLT<0-7>

BUS = The '*TRG' IEEE 488.2 command or the 'TRIG' VXI Word Serial
command.
EXT = The user supplied signal into the front panel "TRIGGER IN"
connector on the SR2510 Timing/Control Board.
TTLT<0-7> = The TTL Trigger lines 0-7 provided on the P2 connector of
the VXI Bus.

TRIGGER:SYSTEM:SOURCE?
EXT

TRIG:SOUR?
TTLT2

Selecting the System Trigger Source (NON-SCPI)

TRIGger :SOURce(?)[:SYSTem]

:SOURce <BUS | EXTernal | TTLT(0-7)>

Parameter Definition

Examples

:SOURce?

Response

Parameter Definition

Examples

3-28 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Selecting the Slope of the External Trigger (NON-SCPI)

The TRIGger:SYSTem:SLOPe command selects the active edge, or slope,
of the External Trigger source. This command allows the test program to
begin execution on either the positive slope (rising edge) or the negative
slope (falling edge) of the external trigger. The default trigger slope is the
positive slope of the external trigger. The TRIGger:SYSTem:SLOPe?
query command returns the active slope of the external trigger.

POSitive = (default) Allows the test program to be triggered (begin
execution) on the rising edge of the external trigger.

NEGative = Allows the test program to be triggered (begin execution) on
the falling edge of the external trigger.

TRIGGER:SYSTEM:SLOPE POSITIVE
TRIG:SLOP NEG

POS | NEG

POS = The test program will be triggered on the rising edge of the exter-
nal trigger.

NEG = The test program will be triggered on the falling edge of the
external trigger.

TRIGGER:SYSTEM:SLOPE?
POS

TRIG:SLOP?
NEG

TRIGger :SLOPe(?)[:SYSTem]

:SLOPe <POSitive | NEGative>

Parameter Definition

Examples

Examples

:SLOPe?

Response

Parameter Definition

SR2500 User's Manual 3-29

Rev. 05Interface Technology

Chapter 3: Programming

Setting the External Trigger Threshold Level (NON-SCPI)

The TRIGger:SYSTem:LEVel command sets the input voltage threshold
of the External Trigger input. The voltage level can be entered as a
floating point numeric or in scientific notation. The voltage threshold
may also be represented by the literal string MIN, MAX, or DEFault. The
TRIGger:SYSTem:LEVel? query command returns the value of the
voltage threshold of the external trigger.

volts = (-5.00V to +4.99V) Values can be specified as a floating point
numeric or in scientific notation using exponential values. Optional V,
MV, and UV suffixes can be used for engineering unit multipliers. The
default engineering units is V (volts).

MIN = -5.00V
MAX = 4.99V
DEFault = 1.20V

TRIGGER:SYSTEM:LEVEL 20e-1V
TRIG:LEV 200MV

volts

volts = The voltage threshold setting specified in volts using floating point
notation values from -5.000000 to 4.990000.

TRIGGER:SYSTEM:LEVEL?
0.200000

TRIG:LEV?
0.200000

TRIGger :LEVel(?)[:SYSTem]

:LEVel:<volts | MIN | MAX | DEFault>

Parameter Definition

Examples

:LEVel?

Response

Parameter Definition

Examples

3-30 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

The Field Definition commands allow the user to create or delete field
definitions. A "field" is a mechanism designed to allow test programmers
a convenient method of working with channel resources. Loosely defined,
a field is a logical grouping of channels. For example, I/O channels that
make up an address bus and a data bus would be grouped into two indi-
vidual fields. A field consists of a name, a type definition and a list of pins.
There are two basic field types, RAM backed fields and Algorithmic fields.
In a RAM backed field, pins may be defined in any order and across
multiple I/O modules. The order in which the pins are defined determines
the MSB/LSB order. Pins assigned to an algorithmic field must reside on
the same I/O module and MSB/LSB order is predetermined in hardware.

Fields may not be modified once created, with the exception of the field
radix. Field radix may be changed at any time. To change a field, you
must first delete the field, and then redefine it. Deleting a field has the
added effect of deleting all output formatting, input sample timing and data
patterns. When a field is first defined, all memories are set to their default
values.

Field Definitions

SR2500 User's Manual 3-31

Rev. 05Interface Technology

Chapter 3: Programming

:DELete

:DEFineFIELd :TYPE

:NAME

:RADix

:CATalog?

:PINassignment

3-32 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Field Definition & Pin Assignment (NON-SCPI)

:DEFineFIELd :TYPE :PINassignment

The FIELd:DEFine:TYPE:PINassignment command defines the field
name, type and channel and pin assignments. Refer to Chapter 1: Intro-
duction for further discussion on Fields.

name = <Any alphanumeric string and ‘_’ (max 8 characters)>

OUTput: An Output type field contains RAM backed output patterns
which provide stimulus pattern to the UUT. The default state for an
output type field is all 0's.

TRIstate: A Tristate type field contains tristate control information for
each state of each pin in output memory. For this reason, the pin assign-
ment for a tristate field should have a one-to-one correlation to the pins in
the corresponding output field, or Algorithmic Output (ALGO) type field.
A '0' bit in a tristate field enables the output pin for the respective vector,
and a '1' tristates the output. The default state for Tristate type fields is all
1's.

OT: A composite of the Output and Tristate fields where the user-entered
data pattern affects both the Output and Tristate memories. Data loaded or
queried to OT type fields may be represented in hex or binary and 'X",
where the X represents a bit (binary) or nibble (hex) that is tristated. The
default state for OT type fields is X.

EXPected: An Expected field type using Expect memory. An expect
type field stores the data used in RAM backed real-time comparisons.
Data returning from the UUT is compared to the data stored in the expect
type field to determine pass/fail conditions. The default state for an
Expect type field is all 0's.

DONtcare: A Dontcare type field holds the bit pattern used to mask out
invalid or irrelevant input channels during the real-time compare opera-
tion. For this reason, the pin assignment for a Dontcare type field should
have a one-to-one correlation to the pins in the corresponding Expect type
field, or Algorithmic Expect (ALGE) type field. These mask bits are also
used to disable CRC calculations for selected channels. A '0' bit in a
Dontcare field enables the compare, or CRC calculation, for the respective
vector, and a '1' disables the compare or CRC calculation. The default
state for Dontcare type fields is all 1's.

:DEFine <name>

Parameter Definition

:TYPE <OUTput | TRIstate | OT | EXPected | DONtcare | ED | RECord | ALGOutput |
ALGExpected | HOUTput | HTRIstate | HEXPected | HDONtcare | HRECord>

Parameter Definition

SR2500 User's Manual 3-33

Rev. 05Interface Technology

Chapter 3: Programming

ED: A composite of the Expected and Dontcare fields where the user-
entered data pattern affects both the Expected and Dontcare memories.
Data loaded or queried to ED type fields may be represented in hex or
binary and 'X", where the X represents a bit (binary) or nibble (hex) that is
masked out of the compare or CRC calculation. The default state for ED
type fields is X.

RECord: Record type fields store the data, or errors, returned by the
UUT, when enabled by the record control logic. Record type fields are
query only and may only be queried when data is recorded to it. Record
controls allow for recording either the data returned by the UUT, as in a
Logic Analyzer, or the results of the real-time comparison (error data).
The record controls also allow switching between the two record methods
during a test.

ALGOutput: Algorithmic Output fields are stimulus fields that generate
output patterns algorithmically. Algorithmic patterns are generated real-
time according to predetermined instructions, thereby allowing pattern
depths many orders of magnitude deeper than traditional RAM backed
pattern generators. Also, as these patterns are represented as algorithms,
data download is significantly reduced, improving test throughput.

As one of the algorithmic commands is Nonalgorithmic, meaning use data
stored in RAM, an algorithmic type field may behave exactly as a RAM
backed field. In fact, you may switch between the two modes within the
same test. Algorithmic Output type fields may not be combined with
Tristate type fields, as in OT type fields, so a separate Tristate field should
be created for each ALGO type field. Algorithmic fields default to the
Nonalgorithmic instruction.

ALGExpected: Algorithmic Expect fields are response fields that
generate expected patterns algorithmically. Algorithmic patterns are
generated real-time according to predetermined instructions, thereby
allowing pattern depths many orders of magnitude deeper than traditional
RAM backed pattern generators. Also, as these patterns are represented as
algorithms, data download is significantly reduced, thus improving test
throughput.

One of the algorithmic commands is Nonalgorithmic, meaning use data
stored in RAM. An algorithmic type field may behave exactly as a RAM
backed field. In fact, you may alternate between the two modes within a
test. Algorithmic Expect type fields may not be combined with Dontcare
type fields, as in ED type fields, so a separate Dontcare field should be
created for each ALGE type field. Algorithmic fields default to the
Nonalgorithmic instruction.

3-34 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Note
Any field defined as an algorithmic field type (ALGE and ALGO)
must conform to the following algorithmic field rules:
1. Field pins must all reside on the same I/O Module.
2. The pin order must be contiguous (Pin assignment cannot

have gaps).
3. The pins must be in groups of eight and must start on pin 32,

24, 16 or 8.
4. The pin numbers must be ordered from high to low (MSB to

LSB). An assignment of C1P1-8 is not valid, while C1P8-1 is
valid.

HOUTput: A field type of HOUTput is a special hardware mapped
Output type field, meaning the pin mapping always follows the hardware
MSB to LSB order, and the width of the field must always 32 bits wide.
The only valid pin assignments for this type field is CXP32-1, where X
represents the I/O board number. Having fields which are pin mapped
according to hardware allows the parser to bypass the pin mapping
algorithms, which improved the performance of loading and querying data
in ASCII format.

HTRIstate: A field type of HTRIstate is a special hardware mapped
Tristate type field, meaning the pin mapping always follows the hardware
MSB to LSB order, and the width of the field must always be 32 bits wide.
The only valid pin assignments for this type field are CXP32-1, where X
represents the I/O module number. Having fields which are pin mapped
according to hardware allows the parser to bypass the pin mapping
algorithms, which improves the performance of loading and querying data
in ASCII format.

HEXPected: A field type of HEXPected is a special hardware mapped
Expected type field, meaning the pin mapping always follows the hard-
ware MSB to LSB order, and the width of the field must always be 32 bits
wide. The only valid pin assignments for this type field are CXP32-1,
where X represents the I/O module number. Having fields which are pin
mapped according to hardware allows the parser to bypass the pin map-
ping algorithms, which improves the performance of loading and querying
data in ASCII format.

HDONtcare: A field type of HDONtcare is a special hardware mapped
DONtcare type field, meaning the pin mapping always follows the hard-
ware MSB to LSB order, and the width of the field must always be 32 bits
wide. The only valid pin assignments for this type field are CXP32-1,
where X represents the I/O module number. Having fields which are pin
mapped according to hardware allows the parser to bypass the pin map-

SR2500 User's Manual 3-35

Rev. 05Interface Technology

Chapter 3: Programming

ping algorithms, which improves the performance of loading and querying
data in ASCII format.

HRECord: A field type of HRECord is a special hardware mapped
Record type field, meaning the pin mapping always follows the hardware
MSB to LSB order, and the width of the field must always be 32 bits wide.
The only valid pin assignments for this type field are CXP32-1, where X
represents the I/O module number. Having fields which are pin mapped
according to hardware allows the parser to bypass the pin mapping
algorithms, which improves the performance of loading and querying data
in ASCII format.

pin_list = <C<card#>P<pin#[-pin#]>[{,C<card#>P<pin#[-pin#]>}>

Pin lists are a simple representation of I/O modules, referenced by card
number, followed by a pin number. Multiple pins are delimited by com-
mas, and pin ranges are indicated by using a hyphen '-' character, as
illustrated in the examples.

chan_list = <@<card#>!<pin#>[:<card#>!<pin#>][{,
<card#>!<pin#>[:<card#>!<pin#>}]

Channel lists follow the convention defined in the SCPI Syntax and Style
document, Volume 1, 1993, Section 8.3.2. Channel lists allow pin defini-
tion by I/O board number and pin number, however, where pin lists allow
for the definition of pin ranges for a defined I/O board, channel lists allow
simultaneous definition of I/O board ranges and pin ranges. The use of
the semicolon ':' character implies a range definition.

card# = (1 - number of I/O modules installed)

The card number is determined by its relative position, from left to right,
in the SR2500 system. Card 1 is the system left most group of 32 chan-
nels. The card number increases as you move to the right.

pin# = (32 - 1)

Assigns the physical I/O pins to the field. The order in which pins are
assigned determines the MSB/LSB (Most Significant Bit/Least Significant
Bit) order of the bits in the field. The first assigned pin (also the left most
entry) represents the MSB, while the last assigned pin (the right most
entry) is the LSB. Two formats exist for assigning pins to a field: Pin
Lists and Channel Lists (See above).

:PINassignment <pin_list> | (<chan_list>)

Parameter Definition

3-36 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Fields may overlap one another, or, use some or all of the same pins as
already defined fields. This is useful for loading and querying multiple
fields simultaneously or including a common signal in multiple fields for
reference, such as a clock or other timing signal. For example, you may
have 4 discrete fields used for microprocessor control signals, and one
additional field combining all 4 discrete signals. The state of each control
may be loaded or queried individually, or all at once.

FIELD:DEFINE ADDR:TYPE OT:PINASSIGNMENT C1P4,C1P3,C1P2,C1P1,
C2P4,C2P3,C2P2,C2P1
FIEL:DEF ADDR:TYPE OT:PIN C1P4-1,C2P4-1
FIEL:DEF ADDR:TYPE OT:PIN (@1!4,1!3,1!2,1!1,2!4,2!3,2!2,2!1)
FIEL:DEF ADDR:TYPE OT:PIN (@1!4:1!1,2!4:2!1)
FIEL:DEF ADDR:TYPE OT:PIN (@1!4:2!1)

FIEL:DEF DATA:TYPE ALGO:PIN C2P32-1
FIEL:DEF DATA_LOW:TYPE OT:PIN C2P16-1
FIEL:DEF DATA_HI:TYPE OT:PIN C2P32-17
FIEL:DEF HDW_DATA:TYPE HOUT:PIN C2P32-1

Examples

NoteNote

These examples are
functionally identical.

SR2500 User's Manual 3-37

Rev. 05Interface Technology

Chapter 3: Programming

THIS PAGE INTENTIONALLY LEFT BLANK

3-38 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Field Deletion (NON-SCPI)

:DELete:NAMEFIELd

The FIELd:NAME:DELete command deletes a previously defined field, or
all fields, from the field list.

name = Any alphanumeric string, including underscores ‘_’ (max 8
characters).

ALL = All defined field names.

Terminates the command string and causes the specified fields to be
deleted from the field list.

FIELD:NAME MEM_1:DELETE
FIEL:NAME ALL:DEL

:NAME <name | ALL>

Parameter Definition

:DELete

Examples

SR2500 User's Manual 3-39

Rev. 05Interface Technology

Chapter 3: Programming

Selecting the Field Radix (NON-SCPI)

The FIELd:NAME:RADix command sets the specified field’s default
radix to Binary or Hexadecimal. The radix is used when loading or
querying the data patterns for the named field. When loading data pat-
terns, either hex or binary formats may be used, regardless of the radix
setting, by preceding the data with #h or #b prefixes, respectively. See the
Stimulus and Record subsystem command sections.

name = Any alphanumeric string, including underscores ‘_’ (max 8
characters).

ALL = All defined field names.

Default: HEX

FIELD:NAME MEM_1:RADIX HEX
FIEL:NAME MEM_1:RAD BIN

:RADix:NAMEFIELd

:NAME <name | ALL>

Parameter Definition

:RADix <HEX | BIN>

Examples

3-40 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Field Definition Catalog (NON-SCPI)

:CATalog?:NAMEFIELd

The FIELd:NAME:CATalog query command returns the parameters of
one, or all, previously defined fields.

name = Any alphanumeric string, including underscores ‘_’ (max 8
characters).

ALL = All defined field names.

name,type,radix,pin_list{;name,type,radix,pin_list}

name = Any alphanumeric string, including underscores ‘_’ (max 8
characters).

type = OUT | TRI | OT | EXP | DON | ED | REC | ALGO | ALGE | HOUT
| HTRI | HEXP | HDON | HREC

radix = HEX | BIN

pin_list = <C<card#>P<pin#>[{,C<card#>P<pin#>}]>

card# = (1 - number of I/O boards installed; up to 18 max. I/O boards are
numbered from left to right when facing VXI chassis)

pin# = (1 - 32)

FIELD:NAME MEM_1: CATALOG?
MEM_1,OT,HEX,C1P4,C1P3,C1P2,C1P1,C2P4,C2P3,C2P2,C2P1

FIEL:NAME ALL: CAT?
MEM_1,OT,HEX,C1P4,C1P3,C1P2,C1P1,C2P4,C2P3,C2P2,C2P1;MEM_2,ED,HEX,C1P4,C1P3,C1P2,
C1P1,C2P4,C2P3,C2P2,C2P1

:NAME <name | ALL>

Parameter Definition

:CATalog?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-41

Rev. 05Interface Technology

Chapter 3: Programming

THIS PAGE INTENTIONALLY LEFT BLANK

3-42 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

In order to use the SR2500 for testing, you must first load the stimulus
and/or response patterns, and (optionally) the CMACRO program. There
are two command subsystems that provide access to the SR2500 for
loading these parameters. They are the Stimulus subsystem and the
Record subsystem. The Record subsystem actually provides access to the
Expected Response (response) and Record subsystems. They are grouped
under a single subsystem for convenience.

Only the more basic Stimulus and Record commands are detailed in this
section. More advance commands for these subsystems are provided in
the Advanced Programming section, beginning on pg 3-103.

Loading and Querying Test Vectors

SR2500 User's Manual 3-43

Rev. 05Interface Technology

Chapter 3: Programming

:FIELd(?)STIMulus

:VECTor

:COUNt

:DATA

[:CMACro]

:CLEar

:FIELd

:PATTern(?)

:CLEar

:DEFine(?)

:VECTor

:REDefine

:DELete

:LABel

:TO:COPY

:EXECute

3-44 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

:FIELd(?)RECord

:VECTor

:COUNt

:DATA :CLEar

:FIELd

:PATTern(?)

SR2500 User's Manual 3-45

Rev. 05Interface Technology

Chapter 3: Programming

Selecting the Default Stimulus Field (NON-SCPI)

:FIELd(?)STIMulus

The STIMulus:FIELd command sets the default field for subsequent
STIMulus commands. All STIMulus commands that follow will be
executed on the default field, unless an alternate field name is specified
elsewhere within the STIMulus command. The STIMulus:FIELd? query
command returns the name of the default stimulus field.

name = Any alphanumeric string, including underscores ‘_’ (max 8
characters).

STIMULUS:FIELD ADDR
STIM:FIEL ADDR

name

name = Any alphanumeric string, and ‘_’ (max 8 characters).

STIMULUS:FIELD?
ADDR

STIM:FIEL?
ADDR

:FIELd <name>

Parameter Definition

Examples

:FIELd?

Response

Parameter Definition

Examples

3-46 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Loading/Querying Stimulus Patterns (NON-SCPI)

The STIMulus:VECtor;COUNt;DATA:PATTern command loads output
and/or tristate data vectors into the default stimulus memory field. The
default memory field is defined by the STIMulus:FIELd command. Valid
field types for the STIMulus command are Output (OUT), Tristate (TRI),
Output/Tristate (OT), Algorithmic Output (ALGO), Hardware Output,
(HOUT), and Hardware Tristate (HTRI). Data will be loaded to the
memory field starting at the vector location, specified by the VECtor
parameter, and will load the number of vector words specified by the
COUNt parameter. The data can be loaded to a destination field other
than the default field by using the optional FIELd parameter. The
STIMulus:VECtor; COUNt;DATA:PATTern? query command returns the
output and/or tristate data vectors from the specified field.

The initial vector location where data will start loading (or querying). The
starting vector must be within the range of the size of the test (< test_size).

start_vector = (1 to test_size)

The number of vector words that will be loaded to (or queried from)
memory. The number of vectors can also be specified by the literal string
"ALL", where "ALL" is equal to the number of vectors from the starting
vector location to the last vector in the test. The number of vectors to be
loaded/queried must not exceed the last vector in the test. Example: A test
is defined to be 100 vectors. The starting destination of memory to be
loaded will be at vector location 50. The maximum number of vectors
that can be loaded with the same command is 51, where num_vectors =
(100-50) + 1 = 51.

num_vectors = (1 to ((test_size - start_vector) + 1))

ALL = All vectors from the start_vector location to the last vector in the
test.

STIMulus :VECtor ;COUNt ;DATA

:PATTern(?)

:FIELd ;PATTern(?)

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

SR2500 User's Manual 3-47

Rev. 05Interface Technology

Chapter 3: Programming

The DATA command string provides the command path to the PATTern
parameter.

none

The optional FIELd parameter allows the data associated with the same
command to be loaded to (or queried from) a destination field other than
the default field. If the FIELd parameter option is used, then the FIELd
and PATTern(?) parameters must be separated by a semicolon as shown in
the example below.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

The data_value parameter is the actual data that will be loaded to the
stimulus memory field. If no radix prefix (#h or #b) is used with the data
values, then the data values must be entered in the radix format for the
destination field, as defined by the FIELd:NAME: RADix command. If
the radix for the destination field is set to HEX, then data can be specified
in hexadecimal format (the '#h' prefix is optional) or in binary format if
the '#b' prefix is specified. Valid hexadecimal data values are '0' through
'F'. The hexadecimal 'X' character is valid only with Output/Tristate type
fields (OT) and represents a tristate condition for that nibble (1 nibble=4
bits).

If the radix for the field is set to BIN, then data can be specified in binary
format (the '#b' prefix is optional) or in hexadecimal format if the '#h'
prefix is specified. Valid binary data values are '0', '1'. The binary 'X'
character is valid only with Output/Tristate type fields (OT) and repre-
sents a tristate condition for the corresponding bit position. Leading '0'
data characters may be omitted; i.e. '#hF' = '#h000F' and '#b1100' =
'#b0000000000001100', for a 16 bit wide field.

data_value = <[#h]{(0-F) | X}> | <[#b]{0 | 1 | X}>

Note
The number of data_value elements must be equal to num_vectors.
If a count mismatch occurs, the data will be loaded up to the number
of data_value elements or the num_vectors, whichever is less. An
error message will be generated.

;DATA

Parameter Definition

:FIELd <name>

Parameter Definition

:PATTern <data_value>{,data_value}

Parameter Definition

3-48 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

STIMULUS:VECTOR 1;COUNT 4;DATA:FIELD ADDR;PATTERN #h00AA,
#h0055,#h00AA,#h0055
STIM:VEC 1;COUN 4;DATA:PATT AA,55,AA,55
STIM:VEC 1;COUN 4;DATA:PATT #b0000000010101010,#b0000000001
010101,#b0000000010101010,#b0000000001010101
STIM:VEC 1;COUN 4;DATA:PATT#b10101010,#b01010101,#b10101010,
#b01010101

Note
All the commands shown above perform identical functions. The
default field is ADDR and is set to HEX radix.

The data_value parameter is the actual data that will be read from the
stimulus memory field. The radix of data_value is determined by the
FIELd:NAME:RADix command. If the radix for the field is set to HEX,
then data will be returned in hexadecimal format with the '#h' prefix.
Valid hexadecimal data values are '0' through 'F'. The hexadecimal 'X'
character is valid only with Output/Tristate type fields (OT) and repre-
sents a tristate condition for that nibble (1 nibble=4 bits). The
hexidecimal '?' character will be displayed when a nibble contains a
combination of enabled and tristated stimulus pins

If the radix for the field is set to BIN, then data will be returned in binary
format with the '#b' prefix. Valid binary data values are '0', '1'. The binary
'X' character is valid only with Output/Tristate type fields (OT) and
represents a tristate condition for the corresponding bit position. Each
field defined can have a different radix format. Leading '0' data characters
will be returned.

data_value{,data_value}

data_value = <#h{(0-F) | X}> | <#b{0 | 1 | X}>

STIMULUS:VECTOR 1;COUNT 4;DATA:FIELD ADDR;PATTERN?
#h00AA,#h0055,#h00AA,#h0055

STIM:VEC 1;COUN 4;DATA:PATT?
#h00AA,#h0055,#h00AA,#h0055

STIM:VEC 1;COUN 2;DATA:PATT?
#b01X00110, #b0011X100

#h?6, #h3?

Examples

:PATTern?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-49

Rev. 05Interface Technology

Chapter 3: Programming

Clearing Stimulus Patterns (NON-SCPI)

The STIMulus:VECtor;COUNt;DATA:CLEar command clears the data
pattern by loading "all zeros" (0's) into the default memory field. If the
destination field is an output type (OUT, ALGO, HOUT), the data pattern
will be set to all zeros. If the destination field is a tristate type (TRI,
HTRI), the data pattern will be set to all enable condition (0's). If the
destination field is an output/tristate type (OT), the data pattern will be set
to all zeros and enable condition. The default memory field is defined by
the STIMulus:FIELd command. Data will be cleared starting at the vector
location, specified by the VECtor parameter, and will clear the number of
vector words specified by the COUNt parameter. A destination field other
than the default field can be cleared by using the optional FIELd param-
eter.

The initial vector location where data will be cleared. The starting vector
must be within the range of the size of the test (< to test_size).

start_vector = (1 to test_size)

The number of vector memory words that will be cleared. The number of
vectors can also be specified by the literal string "ALL", where "ALL" is
equal to the number of vectors from the starting vector location to the last
vector in the test. The number of vectors to be cleared must not exceed
the last vector in the test. Example: A test is defined to be 100 vectors.
The starting destination of memory to be cleared will be at vector location
50. The maximum number of vectors that can be cleared with the same
command is 51, where num_vectors = (100-50) + 1 = 51.

num_vectors = (1 to ((test_size-start_vector) + 1))

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the CLEar
parameter.

none

STIMulus :VECtor ;COUNt ;DATA

:CLEar

:FIELd ;CLEar

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors>

Parameter Definition

;DATA

Parameter Definition

3-50 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

The optional FIELd parameter allows a destination field other than the
default field to be specified. The data in the alternate field will be cleared.
If the FIELd parameter option is used, then the FIELd and CLEar param-
eters must be separated by a semicolon as shown in the example below.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

Causes the Output and/or Tristate data patterns for the specified field to be
cleared.

none

STIMULUS:VECTOR 1;COUNT 4;DATA:FIELD ADDR;CLEAR
STIM:VEC 1;COUN 4;DATA:CLE

:FIELd <name>

Parameter Definition

:CLEar

Parameter Definition

Examples

SR2500 User's Manual 3-51

Rev. 05Interface Technology

Chapter 3: Programming

Enabling the Armdata Function (NON-SCPI)

STIMulus :MODE(?):ARMData

:MODE < mode_num | ON | OFF >

Parameter Definition

Examples

:MODE?

The STIMulus:ARMData:MODE command enables/disables the
ARMDATA function. The ARMDATA function allows a user-defined
data pattern to be output on the stimulus pins, while the SR2500 is in an
ARMED state, waiting for a trigger. The user-defined data pattern will be
held on the stimulus pins until the SR2500 is triggered and the test pro-
gram begins execution. The STIMulus:ARMData:MODE? query com-
mand returns the status of the ARMDATA function.

The MODE parameter can be specified as a numeric value or a literal
string. The Armdata function is enabled by entering a "non-zero" numeric
value for mode_num or by entering the literal string "ON". The Armdata
function is disabled by entering a "0" numeric value for mode_num or by
entering the literal string "OFF".

mode_num = (0 | 1); where "1" value enables the ARMDATA function
and "0" value disables the ARMDATA function.

ON = Enables the ARMDATA function.
OFF = Disables the ARMDATA function.
DEFAULT = Off

STIMULUS:ARMDATA:MODE ON
STIM:ARMD:MODE 1
STIM:ARMD:MODE OFF

0 | 1

0 = The ARMDATA function is disabled.
1 = The ARMDATA function is enabled.

STIMULUS:ARMDATA:MODE?
1

STIM:ARMD:MODE?
0

Response

Parameter Definition

Examples

3-52 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Setting the Armdata Pattern (NON-SCPI)

STIMulus :ARMData :PATTern(?)

:FIELd ;PATTern(?)

The STIMulus:ARMData:PATTern command defines the data pattern that
will be output to the stimulus pins when the SR2500 is placed in the
ARMED state and waiting for a trigger. The SR2500 is placed in the
ARMED state when a.) the INITiate command is received; or b.) when the
SR2500 has completed a test and the ARM:COUNt has not been fulfilled.
Each stimulus field has it's own arm data parameter and can be defined
with a unique data pattern. The STIMulus:ARMData:PATTern? query
command returns the arm data value for the specified field.

The optional FIELd parameter specifies the stimulus memory field that the
arm data pattern will be assigned to (or queried from). Valid field types
for the FIELd parameter are Output (OUT), Tristate (TRI), Output/Tristate
(OT), Algorithmic Output (ALGO), Hardware Output, (HOUT), and
Hardware Tristate (HTRI). If the FIELd parameter option is used, then the
FIELd and PATTern(?) parameters must be separated by a semicolon as
shown in the example below. If the FIELd parameter is omitted, then the
default stimulus field is assumed. The default stimulus field is defined by
the STIMulus:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for this oc-
currence of the command, but does not change the default field.

The arm_data parameter is the actual data value that will be output to the
stimulus field pins while the SR2500 is in the ARMED state. The
arm_data can be entered in hexadecimal or binary format by specifying
the '#h' or '#b' prefix respectively.

Valid hexadecimal data values are '0' through 'F'. The hexadecimal 'X'
character is valid only with Output/Tristate fields (OT) and represents a
tristate condition for that nibble (1 nibble=4 bits).

Valid binary data values are '0', '1'. The binary 'X' character is valid only
with Output/Tristate fields (OT) and represents a tristate condition for the
corresponding bit position. Leading '0' data characters may be omitted;
i.e. '#hF' = '#h000F' and '#b1100' = '#b0000000000001100', for a 16 bit
example field.

:FIELd <name>

Parameter Definition

:PATTern <arm_data>

SR2500 User's Manual 3-53

Rev. 05Interface Technology

Chapter 3: Programming

arm_data = <#h{(0-F) | X}> | <#b{0 | 1 | X}>

STIMULUS:ARMDATA:FIELD ADDR;PATTERN #h00AA
STIM:ARMD:PATT #hAA
STIM:ARMD:PATT #b0000000010101010
STIM:ARMD:PATT #b10101010

Note
All the commands shown above perform identical functions. The
default field is ADDR and is set to HEX radix.

The name of the queried stimulus field and the arm_data pattern for that
field will be returned. The radix of data_value returned is determined by
the FIELd:NAME:RADix command. If the radix for the field is set to
HEX, then the pattern will be returned in hexadecimal format with the
'#h' prefix. Valid hexadecimal data values are '0' through 'F'. The hexa-
decimal 'X' character is valid only with Output/Tristate fields (OT) and
represents a tristate condition for that nibble (1 nibble=4 bits). The
hexidecimal '?' character will be displayed when a nibble contains a
combination of enabled and tristated stimulus pins.

If the radix for the field is set to BIN, then the pattern will be returned in
binary format with the '#b' prefix. Valid binary data values are '0', '1'. The
binary 'X' character is valid only with Output/Tristate fields (OT) and
represents a tristate condition for the corresponding bit position. Leading
'0' data characters will be returned.

name, arm_data

name = Any alphanumeric string and ‘_’ (max 8 characters).

data_value = <#h{(0-F) | X}> | <#b{0 | 1 | X}>

STIMULUS:ARMDATA:FIELD ADDR;PATTERN?
ADDR,#h00AA

STIM:ARMD:PATT?
IN_DATA,#b00001010111XX0X0

Parameter Definition

Examples

:PATTern?

Response

Parameter Definition

Examples

3-54 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

The STIMulus:;;CMACro:DEFine command loads the macro
command memory with the command instructions that control the
sequence of the stimulus vectors. Each stimulus and response
vector has an associated macro command that determines the next
vector location to use. The default macro command for each vector
location is the OUTput command. The OUTput command executes
the current test vector, and then proceeds to the next sequential
vector. All test programs must have, as a minimum, a Start Program
command (SProgram) and an End Program command (EProgram),
where the SProgram command must be the first vector in the test.
The EProgram command can be at any vector location, and there
can be multiple EProgram commands in a test. If SProgram and
EProgram are not specified, then the first and last vector in the test
program are defaulted to the SProgram and EProgram commands
respectively.

Other macro commands include conditional and unconditional
looping and branching such as Single Vector Looping (WLoopuntil),
Multiple Vector Looping (SLoopuntil), Jump To Vector (JMP),
Jump Subroutine (JSRoutine/CJSRoutine), and Return Subroutine
(RTSubroutine/CRTSubroutine). Macro commands will be loaded
to memory starting at the vector location, specified by the VECtor
parameter, and will load the number of macro commands specified
by the COUNt parameter. The STIMulus:;;CMACro:DEFine?
query command returns the macro commands for the specified
vector location(s).

Note
At least one stimulus type field must be defined before CMACRO
instructions may be downloaded. Refer to FIELD:DEFINE:TYPE:PIN.

The initial vector location where macro commands will start loading
(or querying). The starting vector must be within the range of the
size of the test (< test_size).

start_vector = (1 to test_size)

Loading the Stimulus Macro Command Memory (NON-SCPI)

STIMulus :VECtor ;COUNt ;CMACro :DEFine(?)

:VECtor <start_vector>

Parameter Definition

SR2500 User's Manual 3-55

Rev. 05Interface Technology

Chapter 3: Programming

The number of macro command vectors that will be loaded to (or
queried from) memory. The number of macro command vectors can
also be specified by the literal string "ALL", where "ALL" is equal
to the number of vectors from the starting vector location to the last
vector in the test. The number of macro command vectors to be
loaded/queried must not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector
in the test.

The optional CMACro command string provides the command path
to the DEFine string.

none

The DEFine command string defines the macro command for each
of the specified vector locations. The macro command controls the
test sequence by determining the next test vector to be executed, and
is analogous to a source code listing for the SR2500 test program.
The parenthesis used in the DEFine command string are literal
characters and do not represent parameter ranges as described in the
Command Syntax Key, Table 5-1. The '< >', '[' and '{' characters are
symbols used to represent required, optional, and repetitive param-
eters respectively.

Each test vector can have up to 10 alphanumeric Labels and/or
Sublabels associated with it. Labels and SubLabels are used as
destination parameters for vector jumping commands and subroutine
branching, respectively. Subroutines must start on (32 vector + 1)
boundaries. For example, test vector location 97 can be assigned a
sublabel name of "I_O_TEST", which signifies the beginning vector
location for a test subroutine. A JSRoutine command can branch to
the subroutine by specifying the sublabel name "I_O_TEST". La-
bels and SubLabels are also useful for documenting test programs.

;COUNt <num_vectors | ALL>

Parameter Definition

[;CMACro]

Parameter Definition

:DEFine <([{(LABel <label_name>) | (SUBLabel <label_name>)}] <macro_cmd>) {,([{(LABel
<label_name>) | (SUBLabel <label_name>)}] <macro_cmd>)}>

3-56 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Note
Multiple macro command vectors can be defined with a single DEFine
command string, however, it is strongly recommended that each
macro command vector be specified by its own DEFine command
string so as to simplify documentation and debugging.

label_name = Any alphanumeric string and ‘_’ (max 8 characters).

macro_cmd = The following is a list of valid macro commands. 1.

1. SProgram [(OUT)]
2. EProgram [(OUT)]
3. OUTput [(OUT)]
4. WLoopuntil ([OUT] (< loop_cond >))
5. SLoopuntil ([OUT] (< loop_cond >))
6. ELoop [(OUT)]
7. JMP ([OUT] (< label_name >))
8. JSRoutine ([OUT (< label_name >))
9. RTSubroutine [OUT]
10. SCONDition ([OUT] (<jump_cond >))
11. CJMP ([OUT] (< label_name >))
12. CJSRoutine ([OUT] (< label_name >))
13. CRTSubroutine [OUT]
14. CLEARError [(OUT)]

loop_cond = The following is a list of valid conditions to evaluate for
determining if a Word Loop or Start/End loop should terminate.

1. COUNt == count_value
2. RCOMpare == TRUE
3. RCOMpare != TRUE
4. LATCherror == TRUE
5. STRIgger == TRUE
6. FRONtpanel && match_pattern
7. FRONtpanel &! match_pattern
8. QUALifword && qual_combination
9. QUALifword &! qual_combination

jump_cond = The following is a list of valid conditions to evaluate for
determining if a conditional Jump, Conditional Jump Subroutine or
Conditional Return Subroutine should be executed.

Parameter Definition

SR2500 User's Manual 3-57

Rev. 05Interface Technology

Chapter 3: Programming

1. RCOMpare == TRUE
2. RCOMpare != TRUE
3. LATCherror == TRUE
4. LATCherror != TRUE
5. FRONtpanel && match_pattern
6. FRONtpanel &! match_pattern
7. QUALifword && qual_combination
8. QUALifword &! qual_combination

count_value = (1-65535)

match_pattern = <#h{0-F | X}> | <#b{0 | 1 | X}>

The match_pattern parameter is the 8 bit pattern used to compare against
the 8 front panel input flags, and may be represented in hex (#h prefix) or
binary (#b prefix). If the hex radix prefix is used, then the valid hexadeci-
mal data values are '0' through 'F', and the hexadecimal 'X' character
represents a don't care condition for the corresponding nibble. If the
binary radix prefix is used, then valid binary data values are '0', '1', and the
binary 'X' character represents a don't care condition for the corresponding
bit position.

qual_combination = <#h{0-F}> | <#b{0 | 1}>

The qual_combination parameter is an 8 bit value used to select a combi-
nation of the 8 record qualifiers to compare against the input data, and
may be represented in hex (#h prefix) or binary (#b prefix). If the hex
radix prefix is used, then the valid hexadecimal data values are '0' through
'F'. If the binary radix prefix is used, then valid binary data values are '0'
and '1'. Valid examples of qual_combination are #h0A and #b00001010,
both of which enable simultaneous comparison against record qualifiers
number 2 and 4.

The DEFine query command string returns the macro command for each
of the specified vector locations. The macro command controls the test
sequence by determining the next test vector to be executed, and is
analogous to a source code listing for the SR2500 test program. The
parenthesis used in the DEFine? query command string are literal charac-
ters and do not represent parameter ranges as described in the Command
Syntax Key, Table 5-1. The '< >', '[' and '{' characters are symbols used to
represent required, optional, and repetitive parameters respectively.

 <([{(LAB <label_name>) | (SUBL <label_name>)}] <macro_cmd>)
{,([{(LAB <label_name>) | (SUBL <label_name>)}] <macro_cmd>)}>

:DEFine?

Response

3-58 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

COMMAND DEFINITIONS

The Start Program instruction denotes the beginning of a test program.
Only one Start Program instruction is permitted per test, and must be the
first instruction in the test, i.e., at vector number one. This instruction
requires one clock period to execute.

STIMULUS:VECTOR 1;COUNT 1;CMACRO:DEFINE (SPROGRAM(OUT))
STIM:VECT 1;COUN 1;CMACRO:DEFINE (SP(OUT))
STIM:VECT 1;COUN 1;CMACRO:DEFINE (SP)

The End Program instructions denotes the end of a test program. While
only one Start Program instruction is permitted per test, any number of
End Program instructions are allowed. This instruction requires one clock
period to execute.

STIMULUS:VECTOR 10;COUNT 1;CMACRO:DEFINE (EPROGRAM(OUT))
STIM:VECT 32767;COUN 1;CMACRO:DEFINE ((LABEL END)EP(OUT))
STIM:VECT 65500;COUN 1;CMACRO:DEFINE (EP)

The Output instruction causes the Control Processor to step to the next
vector in the sequence at the end of the test cycle. All Control memory
locations are automatically filled with the Output instruction by the
System Processor when a test is initially defined. This instruction requires
one clock cycle to execute.

STIMULUS:VECTOR 2;COUNT 1;CMACRO:DEFINE (OUTPUT(OUT))
STIM:VECT 10;COUN 2;CMACRO:DEFINE ((LABEL
P_START)OUT),(OUT)
STIM:VECT 1025;COUN 5;CMACRO:DEFINE ((LAB L1)(SUBL
L6)OUT),(OUT),(OUT),(OUT),(OUT(NOP))

The Word Loop Until instruction allows looping at a single vector until
the defined condition is detected. If the condition is true, program execu-
tion continues at the vector after the Word Loop instruction. If the condi-
tion is false, program execution remains at the same vector where the
Word Loop instruction is located (the conditions that may be tested by the
Word Loop instruction are discussed later). The Word Loop instruction
requires one clock period to execute under all conditions and the pattern
looping is seamless.

STIMULUS:VECTOR 2;COUNT 1;CMACRO:DEFINE
(WLOOPUNTIL(OUT(COUNT == 100)))
STIM:VECT 2;COUN 1:DEFINE ((LABEL W_DTACK)WL(OUT (STRI ==
TRUE))
STIM:VECT 2;COUN 1:DEFINE (WL((RCOM == TRUE)))

SProgram[(OUT)]

Examples

EProgram[(OUT)]

Examples

OUTput[(OUT)]

Examples

WLoopuntil([OUT](<loop_cond>))

Examples

SR2500 User's Manual 3-59

Rev. 05Interface Technology

Chapter 3: Programming

SLoopuntil([OUT](<loop_cond>))

The Start Loop Until instruction marks the beginning point of a multi-
vector loop. Loop branching is seamless. Although the loop condition is
specified by the Start Loop instruction, it is not tested until the corre-
sponding End Loop instruction is executed (see below). If the condition
being evaluated is true, the test falls through to the vector after the End
Loop instruction. If the condition tested is false, program execution loops
back to vector where the Start Loop instruction is located, not to the
vector following Start Loop. As a result of the test being performed at the
bottom of the loop, the code within a loop will always be executed at least
once. Start/End loops may be nested two levels deep and both instructions
require one clock period to execute.

STIMULUS:VECTOR 2;COUNT 1;CMACRO:DEFINE
(SLOOPUNTIL(OUT(COUNT == 100)))
STIM:VECT 2;COUN 1:DEFINE ((LAB WRITE)SL(OUT(STRI == TRUE)))
STIM:VECT 200;COUN 1:DEFINE ((LAB READ)SL(OUT(RCOM == TRUE)))

The End Loop instruction marks the range (beginning and end) of a
multiple vector loop, respectively. Loop branching is seamless. Each
instruction requires one clock period to execute under all conditions.
Although the loop condition is specified by the Start Loop instruction, it is
not tested until the corresponding End Loop instruction is executed. If the
condition is true, the test falls through to the vector after the End Loop
instruction. If the condition is false, program execution loops back to
vector where the Start Loop instruction is located, not to the vector
following Start Loop. As a result of the test being performed at the
bottom of the loop, the code within a loop will always be executed at least
once. Start/End loops may be nested two levels deep. For Start/End
loops, the following rules apply:

Note
Failure to observe the following rules may lead to unpredictable re-
sults.

1. For every Start/End Loop instruction encountered, the Control Proces-
sor must encounter a corresponding End/Start Loop instruction,
respectively.

2. If a Jump to Subroutine instruction is executed inside a Start/End
loop, the program must eventually return before the End Loop instruc-
tion is executed.

3. If nesting Start/End loops, both loops must be in a linear sequence of
vectors. It is not permissible to have the first level Start/End loop in

Examples

ELoop[(OUT)]

3-60 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

the main program sequence, and have the second level loop in a
subroutine. Either both loops must be in the main program sequence,
or both loops must be in the subroutine.

STIMULUS:VECTOR 10;COUNT 1;CMACRO:DEFINE (ELOOP(OUT))
STIM:VECT 32767;COUN 1;CMACRO:DEF ((LAB E_WRITE)EL(OUT))
STIM:VECT 65500;COUN 1;CMACRO:DEF ((LAB E_READ)EL)

The Conditional Jump, Conditional Jump to Subroutine and Conditional
Return from Subroutine instructions require that the condition being
evaluated be previously set with the Set Condition instruction. Failure to
do so may lead to unpredictable results. This instruction requires one test
cycle to execute.

STIMULUS:VECTOR 10;COUNT 1;CMACRO:DEFINE
(SCONDITION(OUT(RCOMPARE == TRUE)))
STIM:VECT 10;COUN 1;CMACRO:DEF (SCOND(OUT(FRON &&
#b10XXXXXX)))
STIM:VECT 10;COUN 1;CMACRO:DEF (SCOND(OUT(QUAL &&
#b10001111)))

If jumps (JMP or CJMP) are performed beyond the first 64K vectors, this
instruction must be executed before the jump to specify the jump page.
The Set Jump Page instruction accepts a label as a parameter and calcu-
lates the specific jump page address. The jump page address is held in the
Output and Tristate memories, so any value written to these memories by
the user are overwritten during test initialization (INIT). For this vector,
the output pins are held with the state and tristate condition from the
previous vector. The SJMPP instruction should be used in all tests
developed for 256K and 1M vector depth systems even if the current test
is not larger than 64K. This instruction must be used in any test loaded, if
the total number of vectors in all tests defined is over 64K. Ideally, the
SJMPP instructions should be placed just before the corresponding JMP
or CJMP instruction.

None

The Jump instructions causes test execution to unconditionally branch to
the vector specified. If the vector is not in the current 64K page, the Set
Jump Page instruction must have previously been executed. This instruc-
tion is not seamless and requires four clock cycles for a jump to an odd
vector, or five clock cycles for a jump to an even vector. The jump to
address is held in the Output and Tristate memories (for stimulus) and
Expect and Dontcare memories (for response), so any value written to
these memories by the user are overwritten during test initialization
(INIT). During the jump process, the output pins are held with the state

Examples

SCONDition([OUT](<jump_cond>))

SJMPPage (Supported Only on 256K Vector Cards)

Examples

Examples

JMP([OUT](<label_name>))

SR2500 User's Manual 3-61

Rev. 05Interface Technology

Chapter 3: Programming

and tristate condition from the previous vector and the expect and
Dontcare pattern is also held from the previous vector. Pin formatting
remains active during the jump, so an output pin which might be generat-
ing a clock using a return-to-zero format would remain active during the
jump, unless.

label_name = Any alphanumeric string and ‘_’ (max 8 characters). Must
have previously been defined with either the LABel or SUBLabel optional
parameter in the CMACRO command.

STIM:VECT 500;COUNT 1;CMACRO:DEFINE ((LAB END) EP (OUT))
STIM:VECT 600;COUNT 1;CMACRO:DEFINE ((LAB L1) SL (OUT(STR1==TRUE)))
STIM:VECT 700;COUNT 1;CMACRO:DEFINE ((LAB L6) SL (OUT(RCOM==TRUE)))

The Jump-to-Subroutine instructions causes test execution to uncondition-
ally branch to the vector specified. The subroutine vector must be located
on a (32 vector +1) boundary. If the vector is not in the current 64K page,
the Set Jump Page instruction must have previously been executed. The
actual jump to address is held in the Output and Tristate memories (for
stimulus) and Expect and Dontcare memories (for response), so any value
written to these memories by the user are overwritten during test initializa-
tion (INIT). During the jump process, the output pins and the expected
response patterns are held with the state from the previous vector. Pin
formatting remains active during the jump, so an output pin which might
be generating a clock using a return-to-zero format would remain active
during the jump.

Jump-to-Subroutine instructions require 4 cycles to execute and may be
nested up to eight levels deep, meaning that eight Jump-to-Subroutines,
and/or Conditional-Jump-to-Subroutines, may be executed before a
Return-from-Subroutine, or Conditional-Return-from-Subroutine, must be
performed. All Subroutines must have matching Returns and all subrou-
tines must be completed before the End Program instruction is executed or
unpredictable conditions may result. No stack overflow or underflow
trapping exists.

label_name = Any alphanumeric string and ‘_’ (max 8 characters). Must
have previously been defined with either the LABel or SUBLabel optional
parameter in the CMACRO command.

STIM:VECT 129;COUNT 1;CMACRO:DEF((SUBL WRITE)WL(OUT(COUNT==20)))
STIM:VECT 161;COUNT 1;CMACRO:DEF((SUBL READ)WL(OUT(COUNT==20)))
STIM:VECT 321;COUNT 1;CMACRO:DEF((SUBL WRT_RD) WL(OUT
(COUNT==10)))

Parameter Definition

Examples

JSRoutine([OUT](<label_name>))

Parameter Definition

Examples

3-62 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

The Return-from-Subroutine instruction causes the address on top of the
stack to be popped and program execution to unconditionally resume at
the vector after the Jump-to-Subroutine, or Conditional-Jump-to-Subrou-
tine. This instruction is not seamless. It requires three clock periods for a
return to an odd address and four clock periods for a return to an even
address. Pin formatting remains active during the return, so an output pin
which might be generating a clock using a return-to-zero format would
remain active.

STIMULUS:VECTOR 10;COUNT 1;CMACRO:DEFINE
(RTSUBROUTINE(OUT)
STIM:VECT 10;COUN 1;CMACRO:DEF (RTS(OUT))
STIM:VECT 255;COUN 1;CMACRO:DEF (RTS)

The Conditional-Jump instructions causes test execution to branch to the
vector specified if the defined jump condition evaluates true. The Set
Condition command must have previously been executed, and, if the
vector is not in the current 64K page, the Set Jump Page instruction must
also have been previously executed. This instruction is not seamless and
requires four clock cycles for a jump to an odd vector, or five clock cycles
for a jump to an even vector. If the conditional jump is not taken, the
instruction requires one clock period to execute. The jump to address is
held in the Output and Tristate memories (for stimulus) and Expect and
Dontcare memories (for response), so any value written to these memories
by the user are overwritten during test initialization (INIT). During the
jump process, the output pins are held with the state and tristate condition
from the previous vector and the expected and Dontcare pattern is also
held from the previous vector. Pin formatting remains active during the
jump, so an output pin which might be generating a clock using return-to-
zero format would remain active during the jump.

label_name = Any alphanumeric string and ‘_’ (max 8 characters). Must
have previously been defined with either the LABel or SUBLabel optional
parameter in the CMACRO command.

STIMULUS:VECTOR 10;COUNT 1;CMACRO:DEFINE (CJMP(OUT(END)))
STIM:VECT 10;COUN 1;CMACRO:DEF (CJMP(L1)
STIM:VECT 255;COUN 1;CMACRO:DEF (CJMP(OUT(L6)))

The Conditional-Jump-to-Subroutine instructions causes test execution to
branch to the vector specified if the defined jump condition evaluates true.
The Set Condition command must have previously been executed, and the
jump vector must be located on a (32 vector +1) boundary. If the vector is
not in the current 64K page, the Set Jump Page instruction must also have

RTSubroutine[(OUT)]

CJMP([OUT](<label_name>))

Examples

Parameter Definition

Examples

CJSRoutine([OUT](<label_name>))

SR2500 User's Manual 3-63

Rev. 05Interface Technology

Chapter 3: Programming

been previously executed. The jump to address is held in the Output and
Tristate memories (for stimulus) and Expect and Dontcare memories (for
response), so any value written to these memories by the user are over-
written during test initialization (INIT). During the jump process, the
output pins and the expected response patterns are held with the state from
the previous vector. Pin formatting remains active during the jump, so an
output pin which might be generating a clock using a return-to-zero format
would remain active.

Jump-to-Subroutine instructions require 4 cycles to execute and may be
nested up to eight levels deep, meaning that eight Jump-to-Subroutines,
and/or Conditional-Jump-to-Subroutines, may be executed before a
Return-from-Subroutine, or Conditional-Return-from-Subroutine, must be
performed. All subroutines must have a matching Returns and all subrou-
tines must be completed before the End Program instruction is executed or
unpredictable conditions may result. No stack overflow or underflow
trapping exists.

label_name = Any alphanumeric string and ‘_’ (max 8 characters). Must
have previously been defined with either the LABel or SUBLabel optional
parameter in the CMACRO command.

STIMULUS:VECTOR 10;COUNT 1;CMACRO:DEFINE
(CJSROUTINE(OUT(WRITE)))
STIM:VECT 10;COUN 1;CMACRO:DEF(CJSR(OUT(READ)))
STIM:VECT 255;COUN 1;CMACRO:DEF(CJSR(OUT(WRT_RD)))

The Conditional-Return-from-Subroutine instruction causes the address on
top of the stack to be popped and program execution to resume at the
vector after the Jump-to-Subroutine, or Conditional-Jump-to-Subroutine,
if the defined return condition evaluates true. This instruction is not
seamless. It requires three clock periods for a return to an odd address and
four clock periods for a return to an even address. Pin formatting remains
active during the return, so a clock which might be generated using a
return-to-zero format would remain active during the return.

STIMULUS:VECTOR 10;COUNT 1;CMACRO:DEFINE
(CRTSUBROUTINE(OUT))
STIM:VECT 10;COUN 1;CMACRO:DEF (CRTS(OUT))
STIM:VECT 255;COUN 1;CMACRO:DEF (CRTS)

Parameter Definition

Examples

CRTSubroutine[(OUT)]

Examples

3-64 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

The Clear-Error instruction causes the Response Compare Error Latch to
be reset. The state of the Response Compare signal is continuously
monitored by the system processor. If in any cycle the response input
vector does not match the expect vector, for bit locations where the Don’t
Care bit is 0, the Response Compare Error Latch is set and remains set
until the Clear Error Latch CMACRO is executed. This instruction
requires one clock period to execute. If the Response Compare Error
condition is still present while this instruction is executed, the latch is
immediately set again.

Note
As a by-product of initiating (starting) a test, the Response Compare
pipeline is filled with error conditions, and the Error Latch is set indi-
cating an error. To use the Error Latch in a test, the Response Com-
pare pipeline must be flushed and the Error Latch reset. This can be
done by defining a vector with the bits of all Dontcare memories set
to 1, then loop on that vector for at least 10 cycles. After the loop, the
CLEARError instruction must be executed. If this procedure is not
followed, the Error Latch will always indicate a response compare
error has occurred.

STIMULUS:VECTOR 10;COUNT 1;CMACRO:DEFINE
(CLEARERROR(OUT))
STIM:VECT 10;COUN 1;CMACRO:DEF (CLEARE(OUT))
STIM:VECT 255;COUN 1;CMACRO:DEF (CLEARE)

Note
The following CMACRO commands provide an example of how the
Response Compare pipeline may be flushed and the Error Latch
reset. This example assumes that all Dontcare memories for vec-
tors 1 and 2 are set to '1'. The actual stimulus and response test
patterns start with vector 3.

STIM:VECT 1;COUN 1;CMACRO:DEF (SP)
STIM:VECT 2;COUN 1;CMACRO:DEF (WL(OUT(COUN==10)))
STIM:VECT 3;COUN 1;CMACRO:DEF (CLEARE)

This condition evaluates true after the loop has been executed the defined
number of times. The loop value may range from 1 to 65,535. This
condition may be used with the Start/End Loop and the Word Loop
commands, but not with the Set Condition command, which implies that it
may not be used with the Conditional Jump, Conditional Jump-To Subrou-
tine or the Conditional Return-From Subroutine.

CLEARError[(OUT)]

Examples

COUNt == count_value

CONDITION DEFINITIONS

SR2500 User's Manual 3-65

Rev. 05Interface Technology

Chapter 3: Programming

The Response Compare condition is true when all response input bits
match the corresponding Expected Response bits, where the correspond-
ing Don’t Care bits contains a value of 0. Response Compares is a
dynamic indication of the results of the input data being compared to the
expected response pattern for the current vector only, unlike the Error
Latch. This condition may be used with the Start/End Loop, Word Loop
and the Set Condition commands.

The Response Does Not Compare condition is true when any of the input
bits do not match the corresponding Expected Response bits, where the
corresponding Don’t Care bits contain a value of 0. Response Does Not
Compare is a dynamic indication of the results of the input data being
compared to the expected response pattern for the current vector only,
unlike the Error Latch. This condition may be used with the Start/End
Loop, Word Loop and the Set Condition commands.

The Error Latch Set condition is true if the Response Compare Error
Latch is set. The Response Compare Error Latch is set whenever a
Response Does Not Compare condition occurs, and will remain set until
cleared by the CLEARError instruction. This condition may be used with
the Start/End Loop, Word Loop and the Set Condition commands.

The Error Latch Not Set condition is true if the Response Compare Error
Latch is not set. The Response Compare Error Latch is set whenever a
Response Does Not Compare condition occurs, and will remain set until
cleared by the CLEARError instruction. This condition may be used with
the Set Condition CMACRO only. It is not an option for Word Loop or
Start/End Loop commands.

This condition is true when the currently selected system trigger event
occurs. The trigger may be defined as the IEEE 488.2 *TRG command, a
VXI Word Serial Trigger, both of which use the Bus Trigger Source, one
of the VXI bus TTL triggers (TTLTRG0-7) or the front panel trigger
input. The polarity of the VXI bus TTL trigger and the front panel trigger
is normally set to the rising edge, but may be inverted to trigger on the
falling edge. The front panel trigger input uses a comparator with a
programmable threshold which may be adjustable between ±5.00 Volts.
This condition may be used with the Start/End Loop and the Word Loop
commands, but may not be used with the Set Condition command.

This command provides a match evaluation of the 8 TTL input flags
located on the front panel against an 8 bit match pattern. For this condi-
tion, the match pattern is represented as either a hex (#h) or binary (#b)
value, which includes X's to denote masked inputs. If the match pattern is
represented in hex, then an X will mask out the 4 corresponding input
flags. The condition is true if any of the enabled front panel input flags

RCOMpare == TRUE

LATCherror == TRUE

RCOMpare != TRUE

LATCherror != TRUE

STRIgger == TRUE

FRONtpanel && match_pattern

3-66 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

match the corresponding compare bit. If a match bit is defined as X, then
the corresponding input flag is ignored (will always evaluate false). If all
bits are X, then the evaluation is always false. This condition may be used
with the Start/End Loop, Word Loop and the Set Condition commands.

The Input Flag Pattern Mismatch condition is true if all of the enabled
front panel TTL input flags do not match the corresponding compare bits.
The match pattern is represented as either a hex (#h) or binary (#b) value,
which includes X's to denote masked inputs. If the match pattern is
represented in hex, then an X will mask out the 4 corresponding input
flags. This instruction will always evaluate to true if the match pattern is
set to all X's. Like the Input Flags Pattern Match condition, the 16 bit
literal field is logically broken into two eight-bit fields. The lower eight
bits (7-0) are used to bitwise compare against the front panel input flags.
The upper eight bits are used to bitwise enable the comparison. This
condition may be used with the Start/End Loop, Word Loop and the Set
Condition commands.

The SR2500 supports eight system-wide response input comparators
called Qualifiers (1-8). Each qualifier can be programmed to compare
each bit in a record type field against a 1, 0 or Dontcare value. A qualifier
is true if all enabled bits match the input pattern. The condition is true if
any of the selected qualifiers evaluate true. This condition may be used
with the Start/End Loop, Word Loop and the Set Condition commands.

The Qualifier Mismatch condition is true if none of the selected qualifiers
evaluate true. Each qualifier can be programmed to compare each bit in a
record type field against a 1, 0 or Dontcare value. A qualifier is true if all
enabled bits match the input pattern. This condition may be used with the
Start/End Loop, Word Loop and the Set Condition commands.

FRONtpanel &! match_pattern

QUALifword && qual_combination

QUALifword &! qual_combination

SR2500 User's Manual 3-67

Rev. 05Interface Technology

Chapter 3: Programming

(THIS PAGE INTENTIONALLY LEFT BLANK)

3-68 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Redefining Macro Command Label Vectors (NON-SCPI)

STIMulus [:CMACro] :LABel :VECtor ;REDefine

The STIMulus:CMACro:LABel:VECtor;REDefine command allows a
previously defined Label or Sublabel name to be redefined to another
vector. A label may be redefined to any other vector number, while a
sublabel may only be redefined to vectors on a (32 vector +1) boundary.
Redefining the vector that a label or sublabel is associated with allows
jump locations and subroutines to be changed without having to redefine
all of the vectors where the jump or subroutine calls are made.

Provides a path connecting the CMACro command to the LABel com-
mand.

none

The new vector number that label_name will be associated with.

vector_num = (1 - test_size)

The new vector number that a Sublabel name will be associated with must
be on a (32 vector + 1) boundary - vector 33, 65, 97, and so on.

Specifies the Label or Sublabel name that you wish to associate with a
new vector number.

label_name = Any alphanumeric string and ‘_’ (max 8 characters). Must
have previously been defined with either the LABel or SUBLabel optional
parameter in the CMACRO command.

STIMULUS:CMACRO:LABEL:VECTOR 10;REDEFINE START
STIM:CMAC:LAB:VEC 20;RED END
STIM:LAB:VEC 97;RED IO_TEST

:LABel

Examples

Parameter Definition

;VECtor <vector_num>

Parameter Definition

:REDefine <label_name

Parameter Definition

SR2500 User's Manual 3-69

Rev. 05Interface Technology

Chapter 3: Programming

Deleting Macro Command Labels (NON-SCPI)

STIMulus [:CMACro] :LABel :DELete

The STIMulus:CMACro:LABel:DELete command allows a previously
defined Label or Sublabel name to be deleted from the CMACRO pro-
gram. This command does not delete the label name in the jump or
subroutine calls, only the label names associated with the vector.

Provides a path connecting the CMACro command to the LABel com-
mand.

none

Specifies the Label or Sublabel name that you wish to delete.

label_name = Any alphanumeric string and ‘_’ (max 8 characters). Must
have previously been defined with either the LABel or SUBLabel optional
parameter in the CMACRO command.

STIMULUS:CMACRO:LABEL:DELETE START
STIM:CMAC:LAB:DEL END
STIM:LAB:DEL IO_TEST

:LABel

Parameter Definition

:DELete <label_name>

Parameter Definition

Examples

3-70 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Copying Stimulus Macro Commands (NON-SCPI)

The STIMulus::;CMACro:COPY command allows a range of CMACRO
instructions to be copied from one location to another. Instructions
starting at vector location defined by VECTor, and for the number of
vectors defined by COUNt, will be copied to vector location defined by
the TO parameter.

The initial vector location where macro commands will be copied from.

start_vector = (1 to test_size)

The number of macro command vectors that will be copied to the new
vector location. The number of macro command vectors can also be
specified with the literal string "ALL", where "ALL" is equal to the
number of vectors from the starting vector location to the last vector in the
test. The number of macro command vectors to be copied must not
exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The optional CMACro command string provides the command path to the
DEFine string.

none

The COPY command string specifies that a CMACRO copy function will
be performed.

none

Specifies the starting vector location where the macro commands will be
copied.

dest_vector = (1 - test_size)

The range of macro command vectors copied must fit within the range
bounded by dest_vector and the end of the test.

:VECtor ;COUNt ;CMACroSTIMulus

:COPY :TO ;EXECute

Parameter Definition

:VECtor <start_vector>

;COUNt <num_vectors | ALL>

Parameter Definition

[;CMACro]

Parameter Definition

:COPY

Parameter Definition

:TO <dest_vector>

Parameter Definition

SR2500 User's Manual 3-71

Rev. 05Interface Technology

Chapter 3: Programming

Executes the CMACRO copy function.

none

STIMULUS:VECTOR 12;COUNT 6;CMACRO:COPY:TO 42;EXECUTE
STIM:VEC 33;COUN 16;CMAC:COPY:TO 65;EXEC

:EXECute

Parameter Definition

Examples

3-72 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Selecting the Default Record Field (NON-SCPI)

The RECord:FIELd command sets the default field for subsequent
RECord commands. All RECord commands that follow will be executed
on the default field, unless a different field name is specified. The
RECord:FIELd? query command returns the name of the default field.

name = Any alphanumeric string, including underscores ‘_’ (max 8
characters).

RECORD:FIELD ADDR
REC:FIEL ADDR

name

name = Any alphanumeric string, and ‘_’ (max 8 characters).

RECORD:FIELD?
ADDR

REC:FIEL?
ADDR

:FIELd(?)RECord

:FIELd <name>

:FIELd?

Parameter Definition

Examples

Response

Parameter Definition

Examples

SR2500 User's Manual 3-73

Rev. 05Interface Technology

Chapter 3: Programming

Loading/Querying Record Patterns (NON-SCPI)

RECord :VECtor ;COUNt ;DATA

:FIELd ;PATTern(?)

:PATTern(?)

The RECord:VECtor;COUNt;DATA:PATTern command loads expected
response and/or don't care data vectors into the default response memory
field. The default memory field is defined by the RECord:FIELd com-
mand. Valid field types for the RECord command are Expected (EXP),
Dontcare (DON), Expected/Dontcare (ED), Algorithmic Expected
(ALGE), Hardware Expected (HEXP), and Hardware Dontcare (HDON).
Data will be loaded to the memory field starting at the vector location,
specified by the VECtor parameter, and will load the number of vector
words specified by the COUNt parameter. The data can be loaded to a
destination field other than the default field by using the optional FIELd
parameter. The RECord:VECtor;COUNt;DATA:PATTern? query com-
mand returns the data vectors from the default field.

Note
Data patterns cannot be loaded to RECord and HRECord type fields.
The record memory can only be loaded by UUT input data or UUT
compare results. The RECord and HRECord field data can be que-
ried with the RECord:VECtor;COUNt;DATA:PATTern? command.
Querying recorded data patterns is discussed in the section titled
"Reading Recorded Data".

The initial vector location where data will start loading (or querying). The
starting vector must be within the range of the size of the test (< test_size).

start_vector = (1 to test_size)

The number of vector words that will be loaded to (or queried from)
memory. The number of vectors can also be specified the literal string
"ALL", where "ALL" is equal to the number of vectors from the starting
vector location to the last vector in the test. The number of vectors to be
loaded/queried must not exceed the last vector in the test. Example: A test
is defined to be 100 vectors. The starting destination of memory to be
loaded will be at vector location 50. The maximum number of vectors
that can be loaded with the same command is 51, where num_vectors =
(100-50) + 1 = 51.

Parameter Definition

:VECtor <start_vector>

;COUNt <num_vectors | ALL>

3-74 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the PATTern
parameter.

none

The optional FIELd parameter allows the data associated with the same
command to be loaded to (or queried from) a destination field other than
the default field. If the FIELd parameter option is used, then the FIELd
and PATTern(?) parameters must be separated by a semicolon as shown in
the example below.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

The data_value parameter is the actual data that will be loaded to the
memory field. If no radix prefix (#h or #b) is used with the data values,
then the data values must be entered in the radix format for the destination
field as defined by the FIELd:NAME:RADix command. If the radix for
the destination field is set to HEX, then data can be specified in hexadeci-
mal format (the '#h' prefix is optional) or in binary format if the '#b' prefix
is specified. Valid hexadecimal data values are '0' through 'F'. The
hexadecimal 'X' character is valid only with Expected/Dontcare type fields
(ED) and represents a don't care condition for that nibble (1 nibble=4
bits).

If the radix for the field is set to BIN, then data can be specified in binary
format (the '#b' prefix is optional) or in hexadecimal format if the '#h'
prefix is specified. Valid binary data values are '0', '1'. The binary 'X'
character is valid only with Expected/Dontcare type fields (ED) and
represents a don't care condition for the corresponding bit position.
Leading '0' data characters may be omitted as shown in the examples
below.

data_value = [#h]{(0-F) | X} | [#b]{0 | 1 | X}

Parameter Definition

Parameter Definition

Parameter Definition

:FIELd <name>

;DATA

:PATTern <data_value>{,data_value}

Parameter Definition

SR2500 User's Manual 3-75

Rev. 05Interface Technology

Chapter 3: Programming

Note
The number of data_value elements must be equal to num_vectors.
If a count mismatch occurs, the data will be loaded up to the number
of data_value elements or the num_vectors, whichever is less. An
error message will be generated.

RECORD:VECTOR 1;COUNT 4;DATA:FIELD ADDR;PATTERN #H00AA,
#H0055,#H00AA,#H0055
REC:VEC 1;COUN 4;DATA:PATT AA,55,AA,55
REC:VEC 1;COUN 4;DATA:PATT #B0000000010101010,
#B0000000001010101, #B0000000010101010,#B0000000001010101
REC:VEC 1;COUN 4;DATA:PATT #B10101010,
#B01010101,#B10101010,#B01010101

Note
All the commands shown above perform identical functions. The
default field is ADDR and is set to HEX radix.

The data_value parameter is the actual data that will be read from the
stimulus memory field. The radix of data_value is determined by the
FIELd:NAME:RADix command. If the radix for the field is set to HEX,
then data will be returned in hexadecimal format with the '#h' prefix.
Valid hexadecimal data values are '0' through 'F'. The hexadecimal 'X'
character is valid only with Output/Tristate type fields (OT) and repre-
sents a tristate condition for that nibble (1 nibble=4 bits). The
hexidecimal '?' character will be displayed when a nibble contains a
combination of enabled and don't care expect pins.

If the radix for the field is set to BIN, then data will be returned in binary
format with the '#b' prefix. Valid binary data values are '0', '1'. The binary
'X' character is valid only with Output/Tristate type fields (OT) and
represents a tristate condition for the corresponding bit position. Each
field defined can have a different radix format. Leading '0' data characters
will be returned.

data_value{,data_value}

data_value = <#h{(0-F) | X?}> | <#b{0 | 1 | X}>

RECORD:VECTOR 1;COUNT 4;DATA:FIELD ADDR;PATTERN?
#h00AA,#h0055,#h00AA,#h0055

REC:VEC 1;COUN 4;DATA:PATT?
#h00AA,#h0055,#h00AA,#h0055

REC:VEC 1;COUN 2;DATA:PATT?
#b01X00110, #b0011X100

#h?6, #h3?

:PATTern?

Examples

Examples

Response

Parameter Definition

3-76 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Clearing Record Patterns (NON-SCPI)

RECord :VECtor ;COUNt ;DATA

:CLEar

:FIELd ;CLEar

The RECord:VECtor;COUNt;DATA:CLEar command clears the response
data pattern by loading "all zeros" (0's) into the default memory field. If
the destination field is an expected type (EXP, ALGE, HEXP), the ex-
pected data pattern will be set to all zeros. If the destination field is a
don't care type (DON, HTRI), the don't care pattern will be set to all
enable compare condition (0's). If the destination field is an expected/
don't care type (ED), the expected data pattern will be set to all zeros and
enable compare condition. The default memory field is defined by the
RECord:FIELd command. Data will be cleared starting at the vector
location, specified by the VECtor parameter, and will clear the number of
vector words specified by the COUNt parameter. A destination field other
than the default field can be cleared by using the optional FIELd param-
eter.

The initial vector location where data will be cleared. The starting vector
must be within the range of the size of the test (< test_size).

start_vector = (1 to test_size)

The number of vector memory words that will be cleared. The number of
vectors can also be specified the literal string "ALL", where "ALL" is
equal to the number of vectors from the starting vector location to the last
vector in the test. The number of vectors to be cleared must not exceed
the last vector in the test. Example: A test is defined to be 100 vectors.
The starting destination of memory to be cleared will be at vector location
50. The maximum number of vectors that can be cleared with the same
command is 51, where num_vectors = (100-50) + 1 = 51.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the CLEar
parameter.

Parameter Definition

:VECtor <start_vector>

;COUNt <num_vectors>

Parameter Definition

;DATA

SR2500 User's Manual 3-77

Rev. 05Interface Technology

Chapter 3: Programming

none

The optional FIELd parameter allows a destination field other than the
default field to be specified. The expected or don't care data in the
alternate field will be cleared. If the FIELd parameter option is used, then
the FIELd and CLEar parameters must be separated by a semicolon as
shown in the example below.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

Causes the Expected and/or Don't care memories to be cleared.

none

RECORD:VECTOR 1;COUNT 4;DATA:FIELD ADDR;CLEAR
REC:VEC 1;COUN 4;DATA:CLE

Parameter Definition

:FIELd <name>

Parameter Definition

:CLEar

Parameter Definition

Examples

3-78 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Trace TMACRO's provide a convenient method of triggering the SR2500
record logic for recording data, and are an alternative to record Trace
Sequences. TMACRO's take two forms: Post Trigger and Sequence.
Both TMACRO versions actually compile into Trace Sequence functions,
so the three different approaches are mutually exclusive. Defining any
one will overwrite any of the other previously defined trigger processes.
The Trace Sequence is automatically set to Record Always for Post
Trigger TMACRO's, meaning that even if a trigger pattern is not detected,
data will be recorded to record memory. The Trace Sequence "WRAP"
parameter is automatically set to on for both Post Trigger and Sequence
TMACRO's.

The Post Trigger TMACRO is the simplest, and least flexible method to
trigger data recording. Trigger patterns may be defined for a single ED
type field. Using the Post-Trigger TMACRO method, you can specify a
process where data will be recorded in a Pre Trigger - record all data up to
the defined trigger pattern, Center Trigger - record data both before and
after the defined trigger pattern, or Post Trigger - record all data after the
defined trigger pattern, including the trigger pattern itself.

Sequence TMACRO's allow Multiple Trigger Sequences to be defined,
with a single unique trigger pattern and action for each sequence level.
Like the Post Trigger TMACRO's, Sequence TMACRO's only work with
an ED field type, however, you may specify a different ED type field, and
pattern, for each sequence level. Sequence TMACRO's are not as flexible
as Trace Sequences, but are more flexible than Post Trigger TMACRO's.

Trace TMACRO's

SR2500 User's Manual 3-79

Rev. 05Interface Technology

Chapter 3: Programming

:OCCurrence

:OCCurrence[:DEFine]:TMACro

:FIELd

:PATTern

:INSTruction:SEQuence

:FIELd

:PATTern

:CATalog?

:CLEar

:POSTtrigger

:TRACeRECord

3-80 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Post Trigger TMACRO Definition (NON-SCPI)

:POSTtrigger[:DEFine]:TMACro:TRACeRECord

:OCCurrence :PATTern

:FIELd ;PATTern

The RECord:TRACe:TMACro:DEFine:POSTrigger command provides a
simple method to trigger the record control logic for recording data to
memory. Only three parameters need be defined to use the Post Trigger
TMACRO - four if the default record field is not of type ED, or not the
desired ED type field. All Post Trigger TMACRO parameters must be
sent on the same command line. The TMACRO subsystem does not
provide controls for using the CRC Signature Analyzer registers.

The TRACe command is a branch that connects the RECord and TMACro
commands.

none

The TMACro command is a branch that connects the TRACe command
and either the optional DEFine or the POSTrigger commands.

none

DEFine is the default branch that connect the TMACro and POSTrigger
commands. Since it is the default path, DEFine may be omitted and
POSTrigger used directly after TMACro.

none

Defines the number of data samples to save to the record memory, after
the defined number of trigger pattern matches (num_triggers) occur. It is
possible to perform either Pre Trigger or Center Trigger functions just by
changing the number of samples to record after the trigger pattern is
detected. For example, if the test size is 1024 and the post trigger sample
value is set to 0, then all samples, up to the one where the trigger pattern is
detected, will be recorded. This is equivalent to a Pre Trigger. For center
trigger, you would set the post trigger parameter to half of the defined test
size, and for post trigger, set the parameter to one less than the test size.

num_samples = (1 to test_size)

Parameter Definition

Parameter Definition

:POSTrigger <num_samples>

:DEFine

:TMACro

:TRACe

Parameter Definition

Parameter Definition

SR2500 User's Manual 3-81

Rev. 05Interface Technology

Chapter 3: Programming

Defines the number of trigger pattern matches that must be detected
before recording the number of data samples defined by the POSTrigger
num_samples parameter.

num_triggers = (1-65535)

The optional FIELd parameter allows the data associated with the com-
mand to be loaded to (or queried from) a destination field other than the
default record subsystem field. If the FIELd parameter option is used,
then the FIELd and PATTern(?) parameters must be separated by a semi-
colon instead of colons, as shown in the examples below. The only
allowed field types for TMACRO's are type ED. If the default record field
is not of type ED, or is not the desired ED type field, then the FIELd
parameter must be used to specify an ED type field for defining the
trigger pattern. Otherwise a command error will be generated.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the com-
mand in which it occurs, but it does not change the default field.

The data_value parameter is the actual trigger pattern, and mask, that will
be used to trigger the record control logic. If no radix prefix (#h or #b) is
used with the data values, then the data values must be entered in the radix
format defined for the destination ED field. The radix format for the
destination field is defined by the FIELd:NAME:RADix command. If the
radix for the destination field is set to HEX, then data can be specified in
hexadecimal format (the '#h' prefix is optional) or in binary format if the
'#b' prefix is specified. Valid hexadecimal data values are '0' through 'F'.
For hexadecimal radix fields, the 'X' character represents a don't care
condition for that nibble (1 nibble = 4 bits). If the radix for the field is set
to BIN, then data can be specified in binary format (the '#b' prefix is
optional) or in hexadecimal format if the '#h' prefix is specified. For
binary radix fields, the 'X' character represents a don't care condition for
the corresponding bit position. Leading '0' data characters may be omitted
as shown in the examples below.

data_value = [#h]{(0-F) | X} | #b{0 | 1 | X}

Note
For the following examples, the test size was set to 1024 vectors.
The radix defined for field D15_00 is hex and the width is 16 bits.

:OCCurrence <num_triggers>

Parameter Definition

;FIELd <name>

Parameter Definition

:PATTern <data_value>

Parameter Definition

3-82 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

The first example demonstrates a Pre Trigger record. Recording will start
immediately and continue until the trigger pattern of hex AAAA is
detected. If the record memory fills up before the trigger pattern is
detected, then recording will wrap back to the beginning of memory and
continue. Internal processes will always rearrange the record memory so
that the oldest sample will be at vector 1, and the most recent sample at
vector 1024. If the trigger pattern is never detected, then record memory
will hold the last 1024 samples.

RECORD:TRACE:TMACRO:DEFINE:POSTRIGGER 1:OCCURRENCE
1;FIELD D15_00;PATTERN #hAAAA

The second example demonstrates a Center Trigger record. Recording
will start immediately and continue until the trigger pattern of hex 55 is
detected on the 8 LSB's. The state of the 8 MSB's are masked out with
the 'X' characters. After the trigger pattern is detected an additional 512
samples will be taken, placing the trigger sample at the middle of the
sample range. If the record memory fills up before the trigger pattern is
detected, or before the additional 512 samples are recorded, then record-
ing will wrap back to the beginning of memory and continue. Internal
processes will always rearrange the record memory so that the oldest
sample will be at vector 1, and the most recent sample at vector 1024. If
the trigger pattern is detected before the record memory is half full, then
the record memory will contain all record samples and the trigger sample
will not be found in the middle of the recorded data, but at 512 samples
before the end. If the SR2500 system completes its test after the trigger
pattern is detected, but before the additional 512 samples are taken, then
the location of the trigger sample is unknown, but will be somewhere in
the last 512 samples. In this case, use the REC:DATA:SEARCH function
to locate the trigger word. If the trigger pattern is never detected, then
record memory will hold the last 1024 samples.

REC:TRAC:TMAC:DEF:POST 512:OCC 1;FIELD D15_00;PATTERN #hXX55

The last example demonstrates a Post Trigger record. Recording will start
immediately and continue until the 5th occurrence of the binary trigger
pattern '10' is detected on the 2 most significant bits. The state of the 14
LSB's are masked out with the 'X' characters. After the 5th time the
trigger pattern is detected, an additional 1023 samples will be taken. If
the record memory fills up before the 5th trigger pattern is detected, or
before the additional 1023 samples are recorded, then recording will wrap
back to the beginning of memory and continue. Internal processes will
always rearrange the record memory so that the oldest sample will be at
vector 1, and the most recent sample at vector 1024. If the SR2500
system completes its test after the 5th trigger pattern is detected, but
before the additional 1023 samples are taken, then the record memory will

Example 1.

Example 2.

SR2500 User's Manual 3-83

Rev. 05Interface Technology

Chapter 3: Programming

hold all data samples and the location of the 5th trigger sample is un-
known. In this case, use the REC:DATA:SEARCH function to locate each
occurrence of the trigger word. If the trigger pattern was never detected,
or detected less than 5 times, then the record memory will hold the last
1024 samples.

REC:TRAC:TMAC:DEF:POST 1023:OCC 5;FIELD D15_00;PATTERN
#b10XXXXXXXXXXXXXX

Example 3.

3-84 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Sequence TMACRO Definition (NON-SCPI)

The RECord:TRACe:TMACro:DEFine:SEQuence command provides a
more flexible method than the POSTrigger command to trigger the record
control logic for recording data to memory. At each sequence level, one
of three actions may be taken: Start recording, Continue to the next
sequence level, or Stop recording. All Sequence TMACRO parameters,
for the specified sequence level, must be sent on the same command line.
The TMACRO subsystem does not provide controls for using the CRC
Signature Analyzer registers.

The TRACe command is a branch that connects the RECord and TMACro
commands.

none

The TMACro command is a branch that connects the TRACe command
and either the optional DEFine or the POSTrigger commands.

none

DEFine is the default branch that connect the TMACro and POSTrigger
commands. Since it is the default path, DEFine may be omitted and
SEQuence used directly after TMACro.

none

Specifies the sequence number, or level, that this occurrence of the
command is defining.

num_sequence = (1 to 8)

Instructs the record control logic to either start or stop recording samples
to record memory upon detection of the trigger pattern defined for this
sequence level, or to continue to the next sequence level after the trigger
pattern is detected. The sequence level automatically advances to the next
level if either STARt or STOP is the defined action and the trigger pattern
was detected. Sequence execution will stop after the last defined se-
quence.

:SEQuence[:DEFine]:TMACro:TRACeRECord

:OCCurrence :PATTern

:FIELd

:INSTruction

;PATTern

Parameter Definition

:TMACro

Parameter Definition

Parameter Definition

:SEQUENCE <num_sequence>

:DEFine

:TRACe

Parameter Definition

:INSTruction <STARt | STOP | CONTinue>

SR2500 User's Manual 3-85

Rev. 05Interface Technology

Chapter 3: Programming

STARt = Start storing samples to record memory, including the trigger
sample itself, when the trigger pattern specified for this sequence level is
detected, then advance to the next sequence level.

STOP = Stop storing samples to record memory when the trigger pattern
specified for this sequence level is detected, then advance to the next
sequence level. Recording stops after the trigger sample itself is stored to
memory.

CONTinue = Continue to the next sequence level after the defined trigger
pattern is detected.

Defines the number of trigger pattern matches that must be detected before
taking the defined action.

num_triggers = (1-65535)

The optional FIELd parameter allows the data associated with the com-
mand to be loaded to (or queried from) a destination field other than the
default record subsystem field. If the FIELd parameter option is used,
then the FIELd and PATTern(?) parameters must be separated by a semico-
lon instead of colons, as shown in the examples below. The only allowed
field types for TMACRO's are type ED. If the default record field is not
of type ED, or is not the desired ED type field, then the FIELd parameter
must be used to specify an ED type field for defining the trigger pattern.
Otherwise a command error will be generated.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the com-
mand in which it occurs, but it does not change the default field.

The data_value parameter is the actual trigger pattern, and mask, that will
be used to trigger the record control logic. If no radix prefix (#h or #b) is
used with the data values, then the data values must be entered in the radix
format defined for the destination ED field. The radix format for the
destination field is defined by the FIELd:NAME:RADix command. If the
radix for the destination field is set to HEX, then data can be specified in
hexadecimal format (the '#h' prefix is optional) or in binary format if the
'#b' prefix is specified. Valid hexadecimal data values are '0' through 'F'.
For hexadecimal radix fields, the 'X' character represents a don't care
condition for that nibble (1 nibble = 4 bits). If the radix for the field is set
to BIN, then data can be specified in binary format (the '#b' prefix is
optional) or in hexadecimal format if the '#h' prefix is specified. For
binary radix fields, the 'X' character represents a don't care condition for
the corresponding bit position. Leading '0' data characters may be omitted
as shown in the examples below.

Parameter Definition

:OCCurrence <num_triggers>

Parameter Definition

;FIELd <name>

:PATTern <data_value>

Parameter Definition

3-86 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

data_value = [#h]{(0-F) | X} | #b{0 | 1 | X}

Note
For the following example, the test size was set to 1024 vectors.
The radix defined for field D15_00 is hex and the width is 16 bits.
D15_00 is an ED type field.

This example is similar to the TMACRO:POSTRIGGER examples and
demonstrates a three step record process. Recording will start immedi-
ately and continue until the first trigger pattern of hex AAAA is detected,
after which all recording will stop. Recording will remain suspended until
the trigger pattern of hex 55 is detected on the 8 LSB's. The state of the 8
MSB's are masked out with the 'X' characters. After the second trigger
pattern is detected, an additional 511 samples will be recorded. Recording
will again be suspended, this time until the 5th occurrence of the binary
trigger pattern of '10' is detected on the 2 MSB's. The state of the 14
LSB's are masked out with the 'X' characters. After this third trigger
condition has been met, an additional 511 samples will be taken. If the
record memory fills up before the first trigger pattern is detected, then
recording will wrap back to the beginning of memory and continue.
Internal processes will always rearrange the record memory so that the
oldest sample will be at vector 1, and the most recent sample at vector
1024. If the SR2500 system completes its test after the first trigger pattern
is detected, but before sequence 3/4 and 5/6 samples are taken, then the
record memory will hold all data the most recent 1024 samples, and the
location of the trigger samples, if any, are unknown. In this case, use the
REC:DATA:SEARCH function to locate the trigger samples. If the first
trigger pattern is never detected, then record memory will hold the last
1024 samples.

REC:TRAC:TMAC:DEF:SEQ 1:INST STAR:OCC 1;FIEL D15_00;PATT
#hXXXX
REC:TRAC:TMAC:DEF:SEQ 2:INST STOP:OCC 1;FIEL D15_00;PATT
#hAAAA
REC:TRAC:TMAC:DEF:SEQ 3:INST START:OCC 1;FIEL D15_00;PATT
#hXX55
REC:TRAC:TMAC:DEF:SEQ 4:INST STOP:OCC 510;FIEL D15_00;PATT
#hXXXX
REC:TRAC:TMAC:DEF:SEQ 5:INST START:OCC 1;FIEL D15_00;PATT
#b10XXXXXXXXXXXXXX
REC:TRAC:TMAC:DEF:SEQ 6:INST STOP:OCC 510;FIEL D15_00;PATT
#hXXXX

Parameter Definition

Examples

SR2500 User's Manual 3-87

Rev. 05Interface Technology

Chapter 3: Programming

:COUNt(?)ARM

INITiate

CONTinue

ABORt

:*TRG

Run Time Commands

Run-time commands are used to control starting and stopping of SR2500 tests, as well as providing software
Triggers and Continues. These commands act upon the currently active test program, as selected with the
SYSTEM:TEST command. Only one test may be active and armed or running at any given time.

3-88 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Setting the Arm Counter (SCPI 24.6)

:COUNtARM

The ARM:COUNt command sets the number of times the SR2500 will be
armed. If the arm count is greater than 1, the SR2500 will return to the
ARMED state when the test program execution is complete. The SR2500
is then armed and ready for another trigger to re-execute the test program.
The arming sequence will repeat for the number of times equal to the arm
count. When the final test execution is complete, the SR2500 will be
placed in the IDLE state. The SR2500 can be placed in the IDLE state at
any time by using the ABORt command.

arm_count = (1 - 1,000,000)

1

ARM:COUNT 200
ARM:COUN 5

:COUNt <arm_count>

Parameter Definition

Default

Examples

SR2500 User's Manual 3-89

Rev. 05Interface Technology

Chapter 3: Programming

Initializing the Test Program (SCPI 24.4)

The INITiate command compiles all the test program setup parameters and
places the SR2500 in the ARMED state. Compiling may include becom-
ing Bus Master in order to flush the temporary data cache in the SR5010
by writing the data to the appropriate I/O module. The SR2500 will then
be ready and waiting for a trigger event (hardware signal or software
command) to begin the test program execution. The SR2500 test program
parameters cannot be modified or queried while in the ARMED or
RUNNING state. If the Single Step mode is selected for the Clock
Source, the INITiate command is used as the Single Step command to
advance to the next vector.

Note
Software trigger commands include the IEEE 488.2 "*TRG" com-
mand. See Selecting the System Trigger Source (pg. 3-25) for de-
tails on the *TRG command.

none

INITIATE
INIT

INITiate

Parameter Definition

Examples

3-90 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Software Trigger Command (IEEE 488.2)

*TRG

The *TRG command will trigger the active test program when the trigger
source is set to 'BUS' (see the TRIG:SYST:SOUR:BUS command). This
command also requires that the INIT command be sent prior, and that the
SR2500 is in the 'ARMED' state. Additional *TRG commands sent while
the SR2500 is 'RUNNING', for the purpose of re-triggering the SR2500,
will be ignored.

When used in conjunction with the WLoopuntil (Word Loop Until) and
SLoopuntil (Start Loop Until) commands, the *TRG command allows a
test program to continue past the loop. If the loop condition is set to loop
until STRI = = TRUE, and the system trigger was defined as 'BUS', the test
program will loop on a vector (WLoopuntil) or sequence of vectors
(SLoopuntil) until the *TRG command is received. This feature is useful
for halting or pausing a test program, yet keeping data and clocks alive.

none

*TRG

Parameter Definition

Examples

SR2500 User's Manual 3-91

Rev. 05Interface Technology

Chapter 3: Programming

Test Program Abort Command (SCPI 24.5)

ABORt

The ABORt command asynchronously stops the test program in progress
and places the SR2500 in the IDLE state. The test program can be
ABORTed at any time regardless if the test program is in the ARMED
state or RUNNING state. Unless the test is paused in a word loop, it is
impossible to predict at which vector the test will actually halt. Once
aborted, the test may only be restarted from the beginning.

none

ABORT
ABOR

Parameter Definition

Examples

3-92 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

The Recorded Data commands provide access to record memory. Re-
corded data may be queried only when the SR2500 system has stopped,
and only if data was recorded. You may use the TEST:NAME:STATUS?
query command to query if, and how many, data samples were recorded.
Recorded data may consist of the actual input patterns returned by the
UUT, or the results of the real-time compare between the expected re-
sponse and the data returned by the UUT. It is not possible to load data to
any Record type field. For this reason, only the query version of the
RECORD subsystem commands are described.

The RECORD:DATA:SEARCH command may be used to search a
Record type field for specific data patterns using Equal-To, Not-Equal-To,
Greater-Than and Less-Than search parameters. This is useful for finding
a record trigger pattern when the exact sample vector location is unknown.
It is also useful for locating record vectors where compare error conditions
are recorded.

In addition to providing access to the record memory, the state of the Error
Latch may be queried. This is a copy of the Error Latch flag returned by
the TEST:NAME:STATUS? command and is provided as a more conve-
nient method of determining pass/fail conditions.

Reading Recorded Data

SR2500 User's Manual 3-93

Rev. 05Interface Technology

Chapter 3: Programming

:VECTorRECord

:COUNt

:DATA :FIELd

:PATTern?

:ERRor?

:SEARch

:VECTor?

:PATTERN

:MODE

:OCCURENCE

3-94 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Reading Recorded Patterns (NON-SCPI)

The RECord:VECtor;COUNt;DATA:PATTern? query command returns
the data vectors from Record memory fields. The data vectors returned
will be either input data recorded from the Unit-Under-Test (UUT) or
error results of the input data compared to the expected response data.
The data vectors that are recorded, whether, input data or error data, is
determined by the RECord:TRACe:SEQuence:FILTer command.

Valid field types for the RECord:;;:PATTern? command are Record (REC)
and Hardware Record (HREC). Data will be queried from the Record
memory field starting at the vector location, specified by the VECtor
parameter, and will read the number of vector words specified by the
COUNt parameter.

The initial vector location where data will start querying. The starting
vector must be within the range of the size of the test (< test_size).

start_vector = (1 to test_size)

The number of vector words that will be queried from Record memory.
The number of vectors can also be specified by the literal string "ALL",
where "ALL" is equal to the number of vectors from the starting vector
location to the last vector in the test. The number of vectors to be queried
must not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the FIELd and
PATTern parameters.

none

RECord :VECtor ;COUNt ;DATA

:FIELd ;PATTern?

:PATTern?

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

Parameter Definition

SR2500 User's Manual 3-95

Rev. 05Interface Technology

Chapter 3: Programming

The FIELd parameter specifies the record field that data patterns will be
queried from. If the FIELd parameter is omitted, then the default memory
field is assumed. The default memory field is defined by the
RECord:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

The data_value parameter is the actual data that will be read from the
memory field. The radix of data_value is determined by the
FIELd:NAME:RADix command. If the radix for the field is set to HEX,
then data will be returned in hexadecimal format with the '#h' prefix.
Valid hexadecimal data values are '0' through 'F'. The hexadecimal 'X'
character represents a don't care condition for that nibble (1 nibble = 4
bits).

If the radix for the field is set to BIN, then data will be returned in binary
format with the '#b' prefix. Valid binary data values are '0', '1'. The binary
'X' character represents a don't care condition for the corresponding bit
position. Each field defined can have a different radix format. Leading '0'
data characters will be returned.

data_value{,data_value}

data_value = #h{(0-F) | X} | #b{0 | 1 | X}

RECORD:VECTOR 1;COUNT 4;DATA:FIELD ADDR;PATTERN?
#h7040,#h002C,#h0000,#h0130

REC:VEC 1;COUN 4;DATA:PATT?
#h7040,#h002C,#h0000,#h0130

:FIELd <name>

Parameter Definition

:PATTern?

Response

Parameter Definition

Examples

3-96 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

Compare Error Status Query (NON-SCPI)

:DATA :ERRor?RECord

The RECord:DATA:ERRor? query command returns status of the error
flag. The error status is a software flag that is "latched" when a compare
error occurs. The status of the error flag is valid only when the SR2500 is
in a STOPPED or IDLE state. The error status can be queried in the
RUNNING state by using the TEST:NAME:STATus? command.

The condition of the error flag is set (ERRor = 1) each time a test is armed
with the INITiate command. The Expect/Compare pipeline should be
flushed and the error flag cleared at the beginning of each test in which
the latched error flag will be used, otherwise the condition of the error flag
will remain set and will not accurately portray the true status of the test
execution. The STIMulus:CMACro (CLEARError) command is used to
clear the condition of the error flag. Refer to the CLEAREerror macro
command for additional information.

The DATA command string provides the command path to the ERRor
string.

none

0 | 1

0 = No compare error has occurred

1 = A compare error has occurred.

RECORD:DATA:ERROR?
1

REC:DATA:ERR?
0

:DATA

Parameter Definition

:ERRor?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-97

Rev. 05Interface Technology

Chapter 3: Programming

Searching Record Memory (NON-SCPI)

RECord :VECtor ;COUNt ;DATA

:FIELd

:SEARch

;SEARch

:PATTern ;MODE

;OCCurrence ;VECTor?

The RECord:;;DATA:SEARch command searches through the Record
Memory for specific pattern matches and returns the vector location and
the matching data pattern. This command is useful for searching through
the recorded input data for finding vector locations of compare errors or
specific data patterns. The RECord:;;DATA:SEARch command will begin
searching the record memory, for the specified field, starting at the vector
location, specified by the VECtor parameter, and will search through the
number of vector words specified by the COUNt parameter. A field other
than the default field may be searched by using the optional FIELd
parameter. The default memory field is defined by the RECord:FIELd
command.

The initial vector location where the RECord:;;DATA:SEARch command
will begin searching the record memory . The starting vector must be
within the range of the size of the test.

start_vector = (1 to test_size)

The number of vector words in the record memory that will be searched.
The number of vectors can also be specified using the literal string "ALL",
where "ALL" is equal to the number of vectors from the starting vector
location to the last vector in the test. The number of vectors to be
searched must not exceed the last vector in the test.

num_vectors = (1 to ((test_size - start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the FIELd and
SEARch strings.

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

3-98 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

none

The FIELd parameter specifies the record memory field that will be
searched for a pattern match. Valid field types for the FIELd parameter
are Record (REC) and Hardware Record (HREC). If the FIELd parameter
is omitted, then the default field is assumed. The default field is defined
by the RECord:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for this oc-
currence of the command, but does not change the default field.

The SEARch command string provides the command path to the PAT-
TERN, MODE and OCCurrence parameters.

none

The data_pattern parameter is the data pattern that will be searched for in
the record memory . If no radix prefix (#h or #b) is used with the data
pattern, then the data pattern must be entered in the radix format defined
for the record field being searched. The radix format for the record field
is defined by the FIELd:NAME:RADix command. If the radix for the
record field is set to HEX, then data pattern can be specified in hexadeci-
mal format (the '#h' prefix is optional) or in binary format if the '#b' prefix
is specified. Valid hexadecimal data values are '0' through 'F'.

If the radix for the field is set to BIN, then data pattern can be specified in
binary format (the '#b' prefix is optional) or in hexadecimal format if the
'#h' prefix is specified. Valid binary data values are '0' and '1'. Leading '0'
data characters may be omitted as shown in the examples below.

data_pattern = [#h](0-F) | [#b](0 | 1)

The MODE parameter determines how the record memory vectors will be
compared against the data_pattern.

EQ = Compares the record memory for an "equal to" match of the
data_pattern.

NE = Compares the record memory for a "not equal to" match of the
data_pattern.

GT = Compares the record memory for a "greater than" match of the
data_pattern.

LT = Compares the record memory for a "less than" match of the
data_pattern.

Parameter Definition

:FIELd <name>

Parameter Definition

;SEARch

Parameter Definition

:PATTern <data_pattern>

Parameter Definition

:MODE < EQ | NE | GT | LT >

Parameter Definition

SR2500 User's Manual 3-99

Rev. 05Interface Technology

Chapter 3: Programming

The number of data_pattern match occurrences to search for and return.
The SEARch command will terminate the search function when the
number of match occurrences has been met or when the last vector in the
search range has been searched. This parameter allows the vector loca-
tions returned to be limited so as to avoid large data transfers. The
number of vectors can also be specified with the literal string "ALL",
where "ALL" will return all occurrences of data_pattern matches. The
number of occurrences to be returned must not exceed the number of
vectors to be searched.

num_match = (1 to num_vectors)

ALL = All occurrences of data_pattern matches.

The VECTor? string terminates the command string and returns the
matching vector locations and data patterns.

match_vector, data_pattern{;match_vector, data_pattern}

match_vector = (start_vector to test_size)

data_pattern = #hXXXXXXXX, where X = (0 - F)

RECORD:VECTOR 1;COUNT 100;DATA:FIELD ADDR;SEARCH:PATTERN
#hAAAA;MODE EQ;OCCURRENCE ALL;VECTOR?
24,#h0000AAAA;65,#h0000AAAA;72,#h0000AAAA;90,#h0000AAAA

The above command searched the "ADDR" field for all occurrences of
data values equal to #hAAAA, starting at vector location 1 and searching
the following 100 vector locations. The search command found four (4)
matches at vector locations 24, 65, 72, and 90.

REC:COUN ALL;DATA:SEAR:PATT #h0000;MODE GT;OCC 2;VECT?
1,#h00005B2C;4,#h00002F2A

The above command searched all memory locations of the default field for
the first 2 occurrences of data values greater than #h0000. The search
command found matches at vector locations 1 and 4 and terminated the
search after the first 2 occurrences.

;OCCurrence <num_match | ALL>

Parameter Definition

:VECTor?

Parameter Definition

Response

Examples

3-100 SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming

(THIS PAGE INTENTIONALLY LEFT BLANK)

SR2500 User's Manual 3-101

Rev. 05Interface Technology

Chapter 3: Programming

This section includes the more advanced commands required for editing,
filling and copying Stimulus/Response patterns, generating Algorithmic
Stimulus/Response patterns, defining output data formatting and input
sampling, and using the high speed binary pattern load/query and learn
functions. This section is divided into the following minor sections:

� Pattern Editing .. pg 3-102
� I/O Formatting and Timing .. pg 3-126
� Algorithmic Pattern Generation ... pg 3-142
� High Speed Binary Pattern Transfers pg 3-170
� Saving and Loading Tests ... pg 3-180
� Advanced Record Triggering .. pg 3-184

Advanced Programming

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-102

The SR2500 has pattern editing functions built into the operating system,
which is a convenient, high level means to load or query Stimulus and
Response memories. Three functions are provided, the ability to fill a
specified field with one of several data patterns, the ability to copy data
patterns from one field to another field of the same or different type, and the
ability to search a field for specified data patterns. Each of these functions is
available in both the STIMULUS and RECORD subsystems. Loading or
copying data to a Record type field is prohibited, however, a Record type
field may be used as the source field when copying data from one field to
another.

Pattern Editing

SR2500 User's Manual 3-103

Rev. 05Interface Technology

Chapter 3: Programming

:VECTorSTIMulus

:COUNt

:DATA

:COPY

:FIELd

:TO

:FIELd

:EXECute

:FILL :TYPe

:INTerleave

:PATTern

:EXECute

:SEARch :PATTern

:OCCurrence

:VECTor?

:MODe

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-104

:VECTorRECord

:COUNt

:DATA

:COPY

:FIELd

:TO

:FIELd

:EXECute

:FILL :TYPe

:INTerleave

:PATTern

:EXECute

:SEARch :PATTern

:OCCurrence

:VECTor?

:MODe

SR2500 User's Manual 3-105

Rev. 05Interface Technology

Chapter 3: Programming

 Copy Stimulus Patterns (NON-SCPI)

STIMulus :VECtor ;COUNt ;DATA

;COPY ;TO

:FIELd

;EXECute;FIELd

The STIMulus:;;:;COPY command copies output and/or tristate data
vectors from a source memory field into a destination memory field. Data
will be copied from the source memory field starting at the vector loca-
tion, specified by the VECtor parameter, and will copy the number of
vector words specified by the COUNt parameter. The source field may be
any valid Stimulus Field type. The destination field can be Stimulus Field
or Record Field type with the exception of the RECord and HRECord
Field types. RECord and HRECord fields are "read only" type and can
only be written to by the UUT.

The initial vector location in the source memory field where data will be
copied from. The starting vector must be within the range of the size of
the test (< test_size).

source_vector = (1 to test_size)

The number of vector words that will be copied from the source field to
the destination field. The number of vectors can also be specified the
literal string "ALL", where "ALL" is equal to the number of vectors from
the starting vector location to the last vector in the test. The number of
vectors to be copied must not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the FIELd and
COPY strings.

none

The FIELd parameter specifies the stimulus source memory field that data
patterns will be copied from. Valid field types for the source FIELd
parameter are Output (OUT), Tristate (TRI), Output/Tristate (OT), Algo-
rithmic Output (ALGO), Hardware Output, (HOUT), and Hardware
Tristate (HTRI). If the FIELd parameter is omitted, then the default
memory field is assumed. The default memory field is defined by the
STIMulus:FIELd command.

:VECtor <source_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

Parameter Definition

:FIELd <source_name>

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-106

source_name = Any alphanumeric string and ‘_’ (max 8 characters).

The COPY command string provides the command path to TO, FIELd,
and EXECute.

none

The initial vector location in the destination memory field where data will
be copied to. The destination starting vector must be within the range of
the size of the test (< test_size).

dest_vector = (1 to test_size)

The FIELd parameter specifies the destination memory field that data
patterns will be copied to. All Stimulus and Record field types are valid
destination fields, except the REC and HREC field types. RECord fields
are "read only" type and can only be written to by sampling the UUT
response. Stimulus field types are Output (OUT), Tristate (TRI), Output/
Tristate (OT), Algorithmic Output (ALGO), Hardware Output, (HOUT),
and Hardware Tristate (HTRI). Record Field types include Expected
(EXP), DontCare (DON), Expected/Dontcare (ED), Algorithmic Expected
(ALGE), Hardware Expected (HEXP), and Hardware DontCare (HDON).
If the FIELd parameter is omitted, then the default memory field is
assumed. The default memory field is defined by the STIMulus:FIELd
command.

dest_name = Any alphanumeric string and ‘_’ (max 8 characters).

EXECute terminates the command string and executes the memory COPY
command.

none

STIMULUS:VECTOR 1;COUNT 100;DATA:FIELD ADDR;COPY:TO
200;FIELD ADDR;EXECUTE

This command copies 100 data words from vectors 1 - 100 to vectors 200-
299. The source and destination field is the "ADDR" field.

STIM:VECT 50;COUN 10;DATA:COPY:TO 60;EXECUTE

This command copies 10 data words from vectors 50 - 59 to vectors 60 -
69. The source and destination field are the default field as defined by the
STIMulus:FIELd command.

STIMULUS:VECTOR 1;COUNT ALL;DATA:FIELD ADDR;COPY:TO
1;FIELD DATA;EXECUTE

This command copies all data vectors from the "ADDR" field to the
"DATA" field.

Parameter Definition

Parameter Definition

:TO <dest_vector>

Parameter Definition

;FIELd <dest_name>

Parameter Definition

;EXECute

Parameter Definition

Examples

;COPY

SR2500 User's Manual 3-107

Rev. 05Interface Technology

Chapter 3: Programming

STIM:VECT 1;COUN 10;DATA:COPY:TO 11;EXEC;TO 21;EXEC;TO
31;EXEC;TO 41;EXEC

This command defines a block of 10 data words from vectors 1 - 10. This
10 vector block pattern is copied repetitively to vectors 11 - 20, 21 - 30, 31
- 40, and 41 - 50. The source and destination field are the default field as
defined by the STIMulus:FIELd command.

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-108

Filling Stimulus Memory (NON-SCPI)

The STIMulus:;;:;FILL command loads the output and tristate memories
with pre-defined pattern sequences. These pre-defined patterns load the
data memory with commonly used data patterns without downloading a
large amount of vectors from the Slot 0 Controller. This feature reduces
the amount of data pattern programming and minimizes the test program
download time. Pattern sequences include Repeat, Increment, Decrement,
Complement, Alternate, Walking "1", Walking "0", and Pseudo-Random
patterns. Data patterns will be loaded starting at the vector location,
specified by the VECtor parameter, and will load the number of vector
words specified by the COUNt parameter. The destination field may be
any valid Stimulus Field type.

Note
The STIMulus:;;:;FILL command should not be confused with the
Algorithmic Command Macros. The STIMulus:;;:;FILL command
loads stimulus memory with data vectors. The Algorithmic Com-
mand Macros change the output pattern "on-the-fly" during run-time.

The initial vector location in the destination field where data will be start
loading. The starting vector must be within the range of the size of the test
(< test_size).

start_vector = (1 to test_size)

The number of vector words that will be loaded to memory. The number
of vectors can also be specified by the literal string "ALL", where "ALL"
is equal to the number of vectors from the starting vector location to the
last vector in the test. The number of vectors to be loaded must not
exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the FIELd and
FILL strings.

STIMulus :VECtor ;COUNt ;DATA :FIELd

;FILL :TYPE ;INTerleave ;EXECute;PATTern

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

SR2500 User's Manual 3-109

Rev. 05Interface Technology

Chapter 3: Programming

none

The FIELd parameter specifies the destination field where data patterns
will be loaded to. Valid field types for the source FIELd parameter are
Output (OUT), Tristate (TRI), Output/Tristate (OT), Algorithmic Output
(ALGO), Hardware Output, (HOUT), and Hardware Tristate (HTRI). If
the FIELd parameter is omitted, then the default memory field is assumed.
The default memory field is defined by the STIMulus:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

The FILL command string provides the command path to TYPE,
INTerleave, PATTern, and EXECute strings.

none

The type of pattern sequence that will be loaded to the destination
memory field.

REPeat = The REPeat parameter fills the memory repetitively with the
same data pattern. The repeating data pattern is defined by the PATTern
parameter.

INCrement = The INCrement parameter fills the memory with an
incrementing data pattern. The initial data value that will begin
incrementing is defined by the PATTern parameter.

DECrement = The DECrement parameter fills the memory with an
decrementing data pattern. The initial data value that will begin
decrementing is defined by the PATTern parameter.

COMplement = The COMplement parameter complements the current
data value at each vector location. The PATTern parameter is not required
and has no affect on the pattern fill command.

ALTernate = The ALTernate parameter fills the memory with an alternat-
ing data pattern. The initial data value that will begin alternating is
defined by the PATTern parameter.

WLK1 = The WLK1 parameter fills the memory with a walking "1" data
pattern. The "1" pattern will "walk" from LSB to MSB, i.e. #h0001,
#h0002, #h0004, #h0008, etc.. The initial bit position that will begin
walking is defined by the PATTern parameter. The WLK1 parameter will
select the least significant "1" bit position in the PATTern parameter to
begin the walking "1" pattern. For example, a initial PATTern data value
of #h00F4 will begin walking from bit position 3, since the least signifi-
cant "1" in #h00F4 is in the 3rd bit position from the LSB. All other

Parameter Definition

:FIELd <name>

Parameter Definition

;FILL

Parameter Definition

:TYPE <REPeat | INCrement | DECrement | COMplement | ALTernate | WLK1 | WLK0 | RANdom>

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-110

"more significant 1s" will be ignored. Therefore, the walking "1" pattern
will begin with #h0004 followed by #h0008, #h0010, etc. A PATTern
parameter data value of #h0000 will cause all data values to be set to
#h0000 and the walking "1" function will not be performed.

WLK0 = The WLK0 parameter fills the memory with a walking "0" data
pattern. The "0" pattern will "walk" from LSB to MSB, i.e. #hFFFE,
#hFFFD, #hFFFB, #hFFF7, etc.. The initial bit position that will begin
walking is defined by the PATTern parameter. The WLK0 parameter will
select the least significant "0" bit position in the PATTern parameter to
begin the walking "0" pattern. For example, a initial PATTern data value
of #h00F3 will begin walking from bit position 3, since the least signifi-
cant "0" in #h00F3 is in the 3rd bit position from the LSB. All other
"more significant 0s" will be ignored. Therefore, the walking "0" pattern
will begin with #hFFFB followed by #hFFF7, #hFFEF, etc.

RANdom = The RANdom parameter fills the memory with a pseudo-
random data pattern. The seed value that is used to initialize the pseudo-
random calculation is determined by the PATTern parameter.

The INTerleave parameter specifies the interval count of the data vector
locations to be "filled". For example, if the interleave count is set to two
(2), then every other vector will be loaded with the fill function. Likewise,
if the interleave count is set to ten (10), then every tenth vector will be
loaded with the fill function. The default value for int_count is 1.

A powerful use of the INTerleave parameter is for loading complex data
patterns to a multiplexed bus. An application example would be in the
case of a multiplexed address/data bus. By setting the int_count to a value
of two (2), the address bus memory can be loaded with an incrementing
pattern command while the data bus can be loaded with a "checkerboard"
pattern using the alternating pattern command.

Another use of the INTerleave parameter is for generating alternating
tristated output vectors. Again by setting the int_count to a value of two
(2), the tristate field can be loaded with an alternating ones and zeros.
This will allow the UUT to alternate between read and write cycles on a
bi-directional data bus. Another use for the INTerleave parameter is for
loading an initial (or reset) data value to repetitive vector locations.

int_count = (1 - 10)

The PATTern parameter sets the initial data value for the fill function.
Refer to each FILL TYPE command for details on the fill function per-
formed on the initial data value. The default init_pattern is #h0.

init_patt = #h{(0-F)} | #b{0 | 1}

;INTerleave <int_count>

Parameter Definition

;PATTern <init_patt>

Parameter Definition

SR2500 User's Manual 3-111

Rev. 05Interface Technology

Chapter 3: Programming

EXECute terminates the command string and executes the memory FILL
command.

none

STIMULUS:VECTOR 1;COUNT 100;DATA:FIELD ADDR;FILL:TYPE
INCREMENT;INTERLEAVE 1;PATTERN #H0000;EXECUTE

This command fills 100 data words, starting at vector location 1, with an
incrementing data pattern starting with an initial data value of #h0000.

STIM:VECT 1;COUN ALL;DATA:FILL:TYPE ALT;PATT
#HAAAA;EXECUTE

This command fills all vector locations with an alternating data pattern of
#hAAAA and #h5555.

;EXECute

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-112

Searching Stimulus Memory (NON-SCPI)

STIMulus :VECtor ;COUNt ;DATA

:FIELd

:SEARch

;SEARch

:PATTern ;MODE

;OCCurrence ;VECTor?

The STIMulus:;;DATA:SEARch command searches through the Output
and Tristate memories for specific pattern matches and returns the vector
location and the matching data pattern. This command is useful for
searching through the output and tristate memories for editing data
patterns. The STIMulus:;;DATA:SEARch command will begin searching
the specified memory field, starting at the vector location, specified by the
VECtor parameter, and will search through the number of vector words
specified by the COUNt parameter. A field other than the default field
may be searched by using the optional FIELd parameter. The default
memory field is defined by the STIMulus:FIELd command.

The initial vector location where the RECord:;;DATA:SEARch command
will begin searching the record memory . The starting vector must be
within the range of the size of the test.

start_vector = (1 to test_size)

The number of vector words in the record memory that will be searched.
The number of vectors can also be specified using the literal string "ALL",
where "ALL" is equal to the number of vectors from the starting vector
location to the last vector in the test. The number of vectors to be
searched must not exceed the last vector in the test.

num_vectors = (1 to ((test_size - start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the FIELd and
SEARch strings.

none

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

Parameter Definition

SR2500 User's Manual 3-113

Rev. 05Interface Technology

Chapter 3: Programming

The FIELd parameter specifies the record memory field that will be
searched for a pattern match. Valid field types for the FIELd parameter
are Output (OUT), Tristate (TRI), Algorithmic Output (ALGO), Hard-
ware Output, (HOUT), and Hardware Tristate (HTRI). The Output/
Tristate (OT) field type cannot be searched since OT fields consist of a
combination of the Output and Tristate memories, and only one memory
can be searched at a time. If the FIELd parameter is omitted, then the
default field is assumed. The default field is defined by the
STIMulus:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for this oc-
currence of the command, but does not change the default field.

The SEARch command string provides the command path to the PAT-
TERN, MODE and OCCurrence parameters.

none

The data_pattern parameter is the data pattern that will be searched for in
the record memory . If no radix prefix (#h or #b) is used with the data
pattern, then the data pattern must be entered in the radix format defined
for the record field being searched. The radix format for the record field
is defined by the FIELd:NAME:RADix command. If the radix for the
record field is set to HEX, then data pattern can be specified in hexadeci-
mal format (the '#h' prefix is optional) or in binary format if the '#b' prefix
is specified. Valid hexadecimal data values are '0' through 'F'. If the radix
for the field is set to BIN, then data pattern can be specified in binary
format (the '#b' prefix is optional) or in hexadecimal format if the '#h'
prefix is specified. Valid binary data values are '0' and '1'. Leading '0' data
characters may be omitted as shown in the examples below.

data_pattern = [#h](0-F) | [#b](0 | 1)

The MODE parameter determines how the record memory vectors will be
compared against the data_pattern.

EQ = Compares the record memory for an "equal to" match of the
data_pattern.

NE = Compares the record memory for a "not equal to" match of the
data_pattern.

GT = Compares the record memory for a "greater than" match of the
data_pattern.

LT = Compares the record memory for a "less than" match of the
data_pattern.

:FIELd <name>

Parameter Definition

;SEARch

Parameter Definition

:PATTern <data_pattern>

Parameter Definition

:MODE < EQ | NE | GT | LT >

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-114

The number of data_pattern match occurrences to search for and return.
The SEARch command will terminate the search function when the
number of match occurrences has been met or when the last vector in the
search range has been searched. This parameter allows the vector loca-
tions returned to be limited so as to avoid large data transfers. The
number of vectors can also be specified the literal string "ALL", where
"ALL" will return all occurrences of data_pattern matches. The number
of occurrences to be returned must not exceed the number of vectors to be
searched.

num_match = (1 to num_vectors)

ALL = All occurrences of data_pattern matches.

The VECTor? string terminates the command string and returns the
matching vector locations and data patterns.

match_vector, data_pattern{;match_vector, data_pattern}

match_vector = (start_vector to test_size)

data_pattern = #hXXXXXXXX, where X = (0 - F)

STIMULUS:VECTOR 1;COUNT 100;DATA:FIELD ADDR;
SEARCH:PATTERN #hAAAA;MODE EQ;OCCURRENCE ALL;VECTOR?
24,#h0000AAAA;65,#h0000AAAA;72,#h0000AAAA;90,#h0000AAAA

The above command searched the "ADDR" field for all occurrences of
data values equal to #hAAAA, starting at vector location 1 and searching
the following 100 vector locations. The search command found four (4)
matches at vector locations 24, 65, 72, and 90.

STIM:COUN ALL;DATA:SEAR:PATT #h0000;MODE GT;OCC 2;VECT?
1,#h00005B2C;4,#h00002F2A

The above command searched all memory locations of the default field for
the first 2 occurrences of data values greater than #h0000. The search
command found matches at vector locations 1 and 4 and terminated the
search after the first 2 occurrences.

;OCCurrence <num_match | ALL>

Parameter Definition

Response

Parameter Definition

Examples

:VECTor?

SR2500 User's Manual 3-115

Rev. 05Interface Technology

Chapter 3: Programming

Copying Record and Response Patterns (NON-SCPI)

RECord :VECtor ;COUNt ;DATA

;COPY ;TO

:FIELd

;EXECute;FIELd

The RECord:;;:;COPY command copies expected response, don't care,
and/or record data vectors from a source memory field into a destination
memory field. The RECord:;;:;COPY command is very useful for copying
Unit-Under-Test (UUT) response data from a "known good UUT" to
expected response memory. This is accomplished by taking record data
that is stored in a RECord field and copying it to an EXPected response
field. Unknown UUTs can then be tested against reference data patterns
from the "known good UUT". This is a common method of developing
test vectors if a "known good UUT" is available.

Data will be copied from the source memory field starting at the vector
location, specified by the VECtor parameter, and will copy the number of
vector words specified by the COUNt parameter. The source field may be
any valid Record Field type. The destination field can be any Stimulus
Field or Record Field type with the exception of the RECord and
HRECord Field types. RECord and HRECord fields are "read only" type
and can only be written to by the UUT.

The initial vector location in the source memory field where data will be
copied from. The starting vector must be within the range of the size of
the test (< test_size).

source_vector = (1 to test_size)

The number of vector words that will be copied from the source field to
the destination field. The number of vectors can also be specified by the
literal string "ALL", where "ALL" is equal to the number of vectors from
the starting vector location to the last vector in the test. The number of
vectors to be copied must not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the FIELd and
COPY strings.

none

:VECtor <source_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

Parameter Definition:

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-116

The FIELd parameter specifies the source memory field that data patterns
will be copied from. Valid field types for the source FIELd parameter are
Record (REC), Expected Response (EXP), DontCare (DON), Expected/
Dontcare (ED), Algorithmic Expected (ALGE), Hardware Expected
(HEXP), and Hardware DontCare (HDON). If the FIELd parameter is
omitted, then the default memory field is assumed. The default memory
field is defined by the RECord:FIELd command.

source_name = Any alphanumeric string and ‘_’ (max 8 characters).

The COPY command string provides the command path to TO, FIELd,
and EXECute.

none

The initial vector location in the destination memory field where data will
be copied to. The destination starting vector must be within the range of
the size of the test (< test_size).

dest_vector = (1 to test_size)

The FIELd parameter specifies the destination memory field that data
patterns will be copied to. All Stimulus and Record field types are valid
destination fields, except the REC and HREC field types. RECord fields
are "read only" type and can only be written to by the UUT. Stimulus field
types are Output (OUT), Tristate (TRI), Output/Tristate (OT), Algorithmic
Output (ALGO), Hardware Output, (HOUT), and Hardware Tristate
(HTRI). Record Field types include Expected (EXP), DontCare (DON),
Expected/Dontcare (ED), Algorithmic Expected (ALGE), Hardware
Expected (HEXP), and Hardware DontCare (HDON). If the FIELd
parameter is omitted, then the default memory field is assumed. The
default memory field is defined by the STIMulus:FIELd command.

dest_name = Any alphanumeric string and ‘_’ (max 8 characters).

EXECute terminates the command string and executes the memory COPY
command.

none

RECORD:VECTOR 1;COUNT 100;DATA:FIELD INPUT;COPY:TO
200;FIELD INPUT;EXECUTE

This command copies 100 data words from vectors 1 - 100 to vectors 200-
299. The source and destination field is the "INPUT" field.

:FIELd <source_name>

Parameter Definition

;COPY

Parameter Definition

:TO <dest_vector>

Parameter Definition

;FIELd <dest_name>

Parameter Definition

;EXECute

Parameter Definition

Examples

SR2500 User's Manual 3-117

Rev. 05Interface Technology

Chapter 3: Programming

REC:VECT 50;COUN 10;DATA:COPY:TO 60;EXECUTE
This command copies 10 data words from vectors 50 - 59 to vectors 60 -
69. The source and destination field are the default field as defined by the
RECord:FIELd command.

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD INPUT;COPY:TO 1;FIELD
TST_DATA;EXECUTE

This command copies all data vectors from the "INPUT" field to the
"TST_DATA" field.

REC:VECT 1;COUN 10;DATA:COPY:TO 11;EXEC;TO 21;EXEC;TO
31;EXEC;TO 41;EXEC

This command defines a block of 10 data words from vectors 1 - 10. This
10 vector block pattern is copied repetitively to vectors 11 - 20, 21 - 30, 31
- 40, and 41 - 50. The source and destination field are the default field as
defined by the RECord:FIELd command.

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-118

Filling Response Memory (NON-SCPI)

RECord :VECtor ;COUNt ;DATA :FIELd

;FILL :TYPE ;INTerleave ;EXECute;PATTern

The RECord:;;:;FILL command loads the Expected Response and
Don'tcare memories with pre-defined pattern sequences. These pre-
defined patterns load the data memory with commonly used data patterns
without downloading a large amount of vectors from the Slot 0 Controller.
This feature reduces the amount of data pattern programming and mini-
mizes the test program download time. Pattern sequences include Repeat,
Increment, Decrement, Complement, Alternate, Walking "1", Walking "0",
and Pseudo-Random patterns. Data patterns will be loaded starting at the
vector location, specified by the VECtor parameter, and will load the
number of vector words specified by the COUNt parameter. The destina-
tion field may be any valid Record Field type (except REC and HREC
field types).

Note
The RECord:;;:;FILL command should not be confused with the Al-
gorithmic Command Macros. The RECord:;;:;FILL command loads
response memory with data vectors. The Algorithmic Command
Macros change the expected response pattern "on-the-fly" during
run-time.

The initial vector location in the destination field where data will start
loading. The starting vector must be within the range of the size of the test
(< test_size).

start_vector = (1 to test_size)

The number of vector words that will be loaded to memory. The number
of vectors can also be specified the literal string "ALL", where "ALL" is
equal to the number of vectors from the starting vector location to the last
vector in the test. The number of vectors to be loaded must not exceed the
last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

SR2500 User's Manual 3-119

Rev. 05Interface Technology

Chapter 3: Programming

The DATA command string provides the command path to the FIELd and
FILL strings.

none

The FIELd parameter specifies the destination field where data patterns
will be loaded to. Valid field types for the source FIELd parameter are
Expected (EXP), Dontcare (DON), Expect/Dontcare (ED), Algorithmic
Expected (ALGE), Hardware Expected, (HEXP), and Hardware Dontcare
(HDON). If the FIELd parameter is omitted, then the default memory
field is assumed. The default memory field is defined by the
RECord:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

The FILL command string provides the command path to TYPE,
INTerleave, PATTern, and EXECute strings.

none

The type of pattern sequence that will be loaded to the destination
memory field.

REPeat = The REPeat parameter fills the memory repetitively with the
same data pattern. The repeating data pattern is defined by the PATTern
parameter.

INCrement = The INCrement parameter fills the memory with an
incrementing data pattern. The initial data value that will begin
incrementing is defined by the PATTern parameter.

DECrement = The DECrement parameter fills the memory with a
decrementing data pattern. The initial data value that will begin
decrementing is defined by the PATTern parameter.

COMplement = The COMplement parameter complements the current
data value at each vector location. The PATTern parameter is not required
and has no affect on the pattern fill command.

ALTernate = The ALTernate parameter fills the memory with an alternat-
ing data pattern. The initial data value that will begin alternating is
defined by the PATTern parameter.

WLK1 = The WLK1 parameter fills the memory with a walking "1" data
pattern. The "1" pattern will "walk" from LSB to MSB, i.e. #h0001,
#h0002, #h0004, #h0008, etc.. The initial bit position that will begin
walking is defined by the PATTern parameter. The WLK1 parameter will

;DATA

Parameter Definition

:FIELd <name>

Parameter Definition

;FILL

Parameter Definition

:TYPE <REPeat | INCrement | DECrement | COMplement | ALTernate | WLK1 | WLK0 | RANdom>

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-120

select the least significant "1" bit position in the PATTern parameter to
begin the walking "1" pattern. For example, an initial PATTern data value
of #h00F4 will begin walking from bit position 3, since the least signifi-
cant "1" in #h00F4 is in the 3rd bit position from the LSB. All other
"more significant 1s" will be ignored. Therefore, the walking "1" pattern
will begin with #h0004 followed by #h0008, #h0010, etc. A PATTern
parameter data value of #h0000 will cause all data values to be set to
#h0000 and the walking "1" function will not be performed.

WLK0 = The WLK0 parameter fills the memory with a walking "0" data
pattern. The "0" pattern will "walk" from LSB to MSB, i.e. #hFFFE,
#hFFFD, #hFFFB, #hFFF7, etc.. The initial bit position that will begin
walking is defined by the PATTern parameter. The WLK0 parameter will
select the least significant "0" bit position in the PATTern parameter to
begin the walking "0" pattern. For example, a initial PATTern data value
of #h00F3 will begin walking from bit position 3, since the least signifi-
cant "0" in #h00F3 is in the 3rd bit position from the LSB. All other
"more significant 0s" will be ignored. Therefore, the walking "0" pattern
will begin with #hFFFB followed by #hFFF7, #hFFEF, etc.

RANdom = The RANdom parameter fills the memory with a pseudo-
random data pattern. The seed value that is used to initialize the pseudo-
random calculation is determined by the PATTern parameter.

The INTerleave parameter specifies the interval count of the data vector
locations to be "filled". For example, if the interleave count is set to two
(2), then every other vector will be loaded with the fill function. Likewise,
if the interleave count is set to ten (10), then every tenth vector will be
loaded with the fill function. The default value for int_count is 1.

A powerful use of the INTerleave parameter is for loading complex data
patterns to a multiplexed bus. An application example would be in the
case of a multiplexed address/data bus. By setting the int_count to a value
of two (2), the expected response can be loaded with a "checkerboard"
pattern using the alternating pattern command.

Another use of the INTerleave parameter is for generating alternating
Dontcare vectors. Again by setting the int_count to a value of two (2), the
Dontcare field can be loaded with an alternating ones and zeros for
alternating read and write cycles. This will allow the expected response to
compare during read cycles and ignore during write cycles.

int_count = (1 - 10)

;INTerleave <int_count>

Parameter Definition

SR2500 User's Manual 3-121

Rev. 05Interface Technology

Chapter 3: Programming

The PATTern parameter sets the initial data value for the fill function.
Refer to each FILL TYPE command for details on the fill function per-
formed on the initial data value. The default init_pattern is #h0.

init_patt = #h{(0-F)} | #b{0 | 1}

EXECute terminates the command string and executes the memory FILL
command.

none

RECORD:VECTOR 1;COUNT 100;DATA:FIELD IN_DATA;FILL:TYPE
INCREMENT;INTERLEAVE 2;PATTERN #H0000;EXECUTE

This command fills every other vector location, starting at vector location
1, with an incrementing data pattern starting with an initial data value of
#h0000.

REC:VECT 1;COUN ALL;DATA:FILL:TYPE ALT;PATT
#HAAAA;EXECUTE

This command fills all vector locations with an alternating data pattern of
#hAAAA and #h5555.

;PATTern <init_patt>

Parameter Definition

;EXECute

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-122

Searching Response Memory (NON-SCPI)

RECord :VECtor ;COUNt ;DATA

:FIELd

:SEARch

;SEARch

:PATTern ;MODE

;OCCurrence ;VECTor?

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

The RECord:;;DATA:SEARch command searches through the Expected
or Dontcare memories for specific pattern matches and returns the vector
location and the matching data pattern. This command is useful for
searching through the expected response memory for editing data patterns.
The RECord:;;DATA:SEARch command will begin searching the speci-
fied memory field, starting at the vector location, specified by the VECtor
parameter, and will search through the number of vector words specified
by the COUNt parameter. A field other than the default field may be
searched by using the optional FIELd parameter. The default memory field
is defined by the RECord:FIELd command.

The initial vector location where the RECord:;;DATA:SEARch command
will begin searching the record memory. The starting vector must be
within the range of the size of the test.

start_vector = (1 to test_size)

The number of vector words in the record memory that will be searched.
The number of vectors can also be specified using the literal string "ALL",
where "ALL" is equal to the number of vectors from the starting vector
location to the last vector in the test. The number of vectors to be
searched must not exceed the last vector in the test.

num_vectors = (1 to ((test_size - start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the FIELd and
SEARch strings.

noneParameter Definition

SR2500 User's Manual 3-123

Rev. 05Interface Technology

Chapter 3: Programming

The FIELd parameter specifies the record memory field that will be
searched for a pattern match. Valid field types for the FIELd parameter
are Expected (EXP), Dontcare (DON), Algorithmic Expected (ALGE),
Hardware Expected, (HEXP), and Hardware Dontcare (HDON). The
Expect/Dontcare (ED) field types cannot be searched since ED fields
consist of a combination of the Expect and Dontcare memories, and only
one memory can be searched at a time. If the FIELd parameter is omitted,
then the default field is assumed. The default field is defined by the
RECord:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for this oc-
currence of the command, but does not change the default field.

The SEARch command string provides the command path to the PAT-
TERN, MODE and OCCurrence parameters.

none

The data_pattern parameter is the data pattern that will be searched for in
the record memory. If no radix prefix (#h or #b) is used with the data
pattern, then the data pattern must be entered in the radix format defined
for the record field being searched. The radix format for the record field
is defined by the FIELd:NAME:RADix command. If the radix for the
record field is set to HEX, then data pattern can be specified in hexadeci-
mal format (the '#h' prefix is optional) or in binary format if the '#b' prefix
is specified. Valid hexadecimal data values are '0' through 'F'. If the radix
for the field is set to BIN, then data pattern can be specified in binary
format (the '#b' prefix is optional) or in hexadecimal format if the '#h'
prefix is specified. Valid binary data values are '0' and '1'. Leading '0' data
characters may be omitted as shown in the examples below.

data_pattern = [#h](0-F) | [#b](0 | 1)

The MODE parameter determines how the record memory vectors will be
compared against the data_pattern.

EQ = Compares the record memory for an "equal to" match of the
data_pattern.

NE = Compares the record memory for a "not equal to" match of the
data_pattern.

GT = Compares the record memory for a "greater than" match of the
data_pattern.

LT = Compares the record memory for a "less than" match of the
data_pattern.

:FIELd <name>

Parameter Definition

;SEARch

Parameter Definition

:PATTern <data_pattern>

Parameter Definition

:MODE < EQ | NE | GT | LT >

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-124

The number of data_pattern match occurrences to search for and return.
The SEARch command will terminate the search function when the
number of match occurrences has been met or when the last vector in the
search range has been searched. This parameters allows the vector
locations returned to be limited so as to avoid large data transfers. The
number of vectors can also be specified the literal string "ALL", where
"ALL" will return all occurrences of data_pattern matches. The number
of occurrences to be returned must not exceed the number of vectors to be
searched.

num_match = (1 to num_vectors)

ALL = All occurrences of data_pattern matches.

The VECTor? string terminates the command string and returns the
matching vector locations and data patterns.

match_vector, data_pattern{;match_vector, data_pattern}

match_vector = (start_vector to test_size)

data_pattern = #hXXXXXXXX, where X = (0 - F)

RECORD:VECTOR 1;COUNT 100;DATA:FIELD ADDR;SEARCH:PATTERN
#hAAAA;MODE EQ;OCCURRENCE ALL;VECTOR?
24,#h0000AAAA;65,#h0000AAAA;72,#h0000AAAA;90,#h0000AAAA

The above command searched the "ADDR" field for all occurrences of
data values equal to #hAAAA, starting at vector location 1 and searching
the following 100 vector locations. The search command found four (4)
matches at vector locations 24, 65, 72, and 90.

REC:COUN ALL;DATA:SEAR:PATT #h0000;MODE GT;OCC 2;VECT?
1,#h00005B2C;4,#h00002F2A

The above command searched all memory locations of the default field for
the first 2 occurrences of data values greater than #h0000. The search
command found matches at vector locations 1 and 4 and terminated the
search after the first 2 occurrences.

;OCCurrence <num_match | ALL>

Parameter Definition

:VECTor?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-125

Rev. 05Interface Technology

Chapter 3: Programming

THIS PAGE LEFT INTENTIONALLY BLANK

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-126

Each SR2510 module contains 6 high resolution timing generators for
every 32 I/O channels which are used to control stimulus edge placement
and sample timing. Four of these timing generators are used with data
formatting controls to provide delay and pulse width timing for the
stimulus channels. The remaining 2 timing generator channels are used to
define edge and/or window sample timing for all 32 input channels. Each
group of 32 output channels share 4 timing generator channels and the 4
channels may be used; to provide 2 delay times, to provide 2 delay time/
pulse width combinations, or to provide one of each. The two sample
timing generators may be used to provide 2 edge sample clocks or one
compare window.

Timing generator channels are always internally paired in groups of 2,
meaning that timing generator channels 0 and 1 will always form one pair,
timing generator channels 2 and 3 will always form another, and so on.
Even numbered timing generator channels are always used to provide
delay times, and odd numbered channels are always used for pulse widths,
for output formatting, or window widths for sample timing.

When a Non-Return-to-Zero (NRZ) output format is used, the pulse width
timing generator channel is unused and unavailable for use elsewhere.
The same is not true for the sample timing generator pair. Each of the 2
sample timing generator channels may be used to provide different edge
sample times, or both may be used together for window sample. Any
timing generator pair may not be placed closer than 10ns apart. However,
timing generator channels from different pairs have no placement restric-
tions. Once a timing generator pair has been used to provide format
timing, or sample timing, for a particular group of channels, it is not
precluded from being used again, (within the same 32 channel group for
stimulus channels), to provide a different format or sample mode, with the
same timing parameters, on another group of channels.

For the most part, all of these considerations are taken care of within the
SR2500's resource management routines and are transparent to the user.
However, if multiple fields overlap, meaning they were defined sharing
common pins, then the hardware format and timing for all overlapping
pins will be set to the last parameters defined for any one of the fields.
When defining two edge sample modes on the same I/O module, the
timing parameters must be defined in descending order, i.e., from longest
delay to shortest. If any violation is detected by the SR2510, a command
error will be generated and the red "ERROR" LED on the SR2510 front
panel will be illuminated. Use the SYSTEM:ERROR? query to read the
error condition and clear the LED.

I/O Formatting and Timing

Note

Timing generator channel num-
bers are used here only for the
purpose of describing how timing
generator channels are paired,
how they function and their restric-
tions. The SR2500 does not ac-
tually allow manipulation of timing
generator channels by number.

SR2500 User's Manual 3-127

Rev. 05Interface Technology

Chapter 3: Programming

STIMulus :CONDitioner :OFORmat :FIELd

[:MODE](?)

:CLEar

:CARD :CATalog?

RECord :CONDitioner :SAMPle :FIELd

[:MODE](?)

:CLEar

:CARD :CATalog?

:EOFFset(?)

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-128

Stimulus Format and Timing (NON-SCPI)

STIMulus :CONDitioner :OFORmat

:FIELd

[:MODE](?)

;MODE(?)

The STIMulus:CONDitioner:OFORmat command defines the stimulus
output format and timing values for the specified stimulus field. If
multiple fields overlap, meaning they were defined sharing common pins,
then the hardware format and timing for all overlapping pins will be set to
the last parameters defined for any one of the fields. See the STIMulus:
CONDitioner:OFORmat:CARD: CATalog? command for information
about how to query the output format settings for each pin. The
STIMulus:CONDitioner:OFORmat :MODE? query command returns the
stimulus output format and timing values for the specified field.

Selects the Output Format path of the STIMULUS:CONDITIONER
subsystem.

none

Determines the pin formatting and timing values for the default or speci-
fied field. MODE is the default command path. If omitted the parameters
associated with MODE are placed after the OFORMAT command.

pin_format = < NRZ | RZ | RONE | RTC | RI >
delay_value = (0 - (clk_per - 5ns))
pulse_width = (10ns - (clk_per - 10ns))

For delay_value and pulse_width, values can be specified as a floating
point numeric or in scientific notation using exponential values. Optional
S, MS, US, and NS suffixes can be used for engineering unit multipliers.
The default engineering unit is S (seconds).

NRZ = Non-Return-to-Zero. The data pattern specified for a given test
vector will be output at "t

0
 + delay_value" within the test cycle, and

remain on the output for one full test cycle, i.e., until "t
1
 + delay_value".

RZ = Return-to-Zero. The data pattern specified for a given test vector
will be output at "t

0
 + delay_value" within the test cycle, and remain on

the output for pulse_width, after which the output will return to zero.

RONE = Return-to-ONE. The data pattern specified for a given test
vector will be output at "t

0
 + delay_value" within the test cycle, and

remain on the output for pulse_width, after which the output will return to
one.

:OFORmat

Parameter Definition

[:MODE]

Parameter Definition

SR2500 User's Manual 3-129

Rev. 05Interface Technology

Chapter 3: Programming

RTC = Return-To-Complement. The data pattern specified for a given
test vector will be output at "t

0
 + delay_value" within the test cycle, and

remain on the output for pulse_width, after which the output will return to
its complement state.

RI = Return-to-Inhibit. The data pattern specified for a given test vector
will be output at "t

0
 + delay_value" within the test cycle, and remain on

the output for pulse_width, after which the output will return to a tristate
condition.

The optional FIELd parameter specifies the stimulus type field that the
OFORmat parameters will act on. Stimulus field types are Output (OUT),
Tristate (TRI), Output/Tristate (OT), Algorithmic Output (ALGO),
Hardware Output, (HOUT), and Hardware Tristate (HTRI). If the op-
tional FIELd and MODE parameters are used, then the FIELd and MODE
parameters must be separated by a semicolon, as shown. If the FIELd
parameter is omitted, then the default stimulus field is used. The default
stimulus field is defined by the STIMulus:FIELd command. The field
name can also be specified by the literal string "ALL", where "ALL"
refers to all stimulus type fields.

name = Any alphanumeric string and ‘_’ (max 8 characters).

ALL = All stimulus fields will be set to the same stimulus formatting and
timing values.

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

STIMULUS:CONDITIONER:OFORMAT:FIELD ADDR;MODE NRZ,10ns
STIM:COND:OFOR:FIEL DATA;MODE RI,30ns,50ns
STIM:COND:OFOR RONE,5.0e-8,2.22e-8

Returns the output format and timing for the specified field.

name pin_format,delay_value[,pulse_width]

name = The specified field name.
pin_format = < UNDEFINED | NRZ | RZ | RONE | RTC | RI >
delay_value = (0 - (clk_per - 5ns))
pulse_width = (10ns - (clk_per - 10ns))

For delay_value and pulse_width, units are in seconds and are always
returned in scientific notation.

:FIELd <name | ALL>

Parameter Definition

Examples

:MODE?

Response

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-130

UNDEFINED = An output format has not been defined for the specified
field, or the output format has been cleared.

NRZ = Non-Return-to-Zero.
RZ = Return-to-Zero.
RONE = Return-to-ONE.
RTC = Return-To-Complement.
RI = Return-to-Inhibit.

STIMULUS:CONDITIONER:OFORMAT:FIELD ADDR;MODE?
ADDR NRZ,1.000000e-8

STIM:COND:OFOR:FIEL DATA;MODE?
DATA RTI,3.000000e-8,5.000000e-8

STIM:COND:OFOR?
DEFAULT RONE,5.000000e-8,2.220000e-8

Examples

Note

When an external clock is implemented, the selection of positive and negaive clock edges are as follows:

STIMulus:CONDitioner:OFORmat:FIELD<name | all>;MODE <NRZ | RZ | RONE | RTC | RI>, <0 | 1>

0 = positive edge, rising edge of clock

1 = negative edge, falling edge of clock

Examples STIMULUS:CONDITIONER:OFORMAT:FIELD DATA;MODE NRZ, 1
STIM:COND:OFOR:FIELD ADDR; MODE RI, 0

STIMULUS:CONDITIONER:OFORMAT:FIELD DATA;MODE?
DATA NRZ,1.000000E+00

STIM:COND:OFOR:FIELD ADDR; MODE?
ADDR RI,0

SR2500 User's Manual 3-131

Rev. 05Interface Technology

Chapter 3: Programming

Clearing Stimulus Format and Timing (NON-SCPI)

STIMulus :CONDitioner

:FIELd

:CLEar:OFORmat

;CLEar

The STIMulus:CONDitioner:OFORmat:CLEar command clears the
stimulus output format and timing values for the specified stimulus field.
The stimulus output format will be set to UNDEFINED. Clearing a field's
output format does not change either the data format nor the timing
parameters used by the hardware. But it does free up the timing generator
resources so they may be defined with new data format and timing param-
eters.

If multiple fields share the same timing generator resources, i.e., they
share pins in the same 32 pin group and they have identical timing, then in
order to free the timing resources, each field must be cleared. If multiple
fields overlap, meaning they were defined sharing common pins, then the
hardware format and timing for all overlapping pins will be set to the last
parameters defined for any one of the fields. See the
STIMulus:CONDitioner:OFORmat:CARD: CATalog? command for
information about how to query the output format settings for each pin.

The optional FIELd parameter specifies the stimulus type field that the
output format and timing edge placement values will clear. Stimulus field
types are Output (OUT), Tristate (TRI), Output/Tristate (OT), Algorithmic
Output (ALGO), Hardware Output, (HOUT), and Hardware Tristate
(HTRI). If the optional FIELd parameter is used, then the FIELd and
CLEar strings must be separated by a semicolon. If the FIELd parameter
is omitted, then the default stimulus field is assumed. The default stimu-
lus field is defined by the STIMulus:FIELd command. The field name can
also be specified by the literal string "ALL", where "ALL" refers to all
stimulus type fields.

name = Any alphanumeric string and ‘_’ (max 8 characters).

ALL = All stimulus fields will be cleared.

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

:FIELd <name | ALL>

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-132

Terminates the command and executes the clear function.

none

STIMULUS:COND:OFORMAT:FIELD ADDR;CLEAR
STIM:COND:OFOR:CLE

:CLEar

Parameter Definition

Examples

SR2500 User's Manual 3-133

Rev. 05Interface Technology

Chapter 3: Programming

STIMulus :CONDitioner :OFORmat :CARD :CATalog?

Stimulus Format and Timing Catalog (NON-SCPI)

The STIMulus:CONDitioner:::CATalog? query command returns the last
pin formatting information for the specified I/O module. The
STIMULUS::CARD:CATALOG? response is not updated after a
STIMULUS::OFORMAT:CLEAR command, and will continue to reflect
the last defined output format for each output pin. Use the
STIMULUS:::MODE? query command to determine if a fields' output
formatting is UNDEFINED.

The I/O card number to be queried. {See Chapter 5 "Logical Addressing"
for information pertaining to I/O card numbers.}

card_num = (1 - 18); up to the number of I/O modules installed in the test
system.

ALL = All the I/O Modules installed in the SR2500 test system.

Returns the pin formatting information for the specified I/O module.

{stimulus_pin pin_format,delay_value[,pulse_width]CR
LF

}; repeat 32
times for each module specified.

stimulus_pin = C<card_num>P<pin_num>
card_num = (1 - 18)
pin_num = (1-32)
pin_format = < NRZ | RZ | RONE | RTC | RI >
delay_value = (0 - (clk_per - 5ns))
pulse_width = (10ns - (clk_per - 10ns))

For delay_value and pulse_width, units are in seconds and are always
returned in scientific notation. The parameters delay_value and
pulse_width are not required to fit within one clock cycle.

STIMULUS:CONDITIONER:OFORMAT:CARD 1:CATALOG?
C1P1 NRZ,1.000000e-08
C1P2 NRZ,1.000000e-08
C1P3 NRZ,1.000000e-08
C1P4 NRZ,1.000000e-08
C1P5 NRZ,1.000000e-08
C1P6 NRZ,1.000000e-08
C1P7 NRZ,1.000000e-08
C1P8 NRZ,1.000000e-08
C1P9 NRZ,1.000000e-08
C1P10 NRZ,1.000000e-08
C1P11 NRZ,1.000000e-08
C1P12 NRZ,1.000000e-08

:CARD <card_num | ALL>

Parameter Definition

:CATalog?

Response

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-134

C1P13 NRZ,1.000000e-08
C1P14 NRZ,1.000000e-08
C1P15 NRZ,1.000000e-08
C1P16 NRZ,1.000000e-08
C1P17 RZ,1.000000e-08,4.000000e-08
C1P18 RZ,1.000000e-08,4.000000e-08
C1P19 RZ,1.000000e-08,4.000000e-08
C1P20 RZ,1.000000e-08,4.000000e-08
C1P21 RZ,1.000000e-08,4.000000e-08
C1P22 RZ,1.000000e-08,4.000000e-08
C1P23 RZ,1.000000e-08,4.000000e-08
C1P24 RZ,1.000000e-08,4.000000e-08
C1P25 RZ,1.000000e-08,4.000000e-08
C1P26 RZ,1.000000e-08,4.000000e-08
C1P27 RZ,1.000000e-08,4.000000e-08
C1P28 RZ,1.000000e-08,4.000000e-08
C1P29RZ,1.000000e-08,4.000000e-08
C1P30 RZ,1.000000e-08,4.000000e-08
C1P31 RZ,1.000000e-08,4.000000e-08
C1P32 RZ,1.000000e-08,4.000000e-08

SR2500 User's Manual 3-135

Rev. 05Interface Technology

Chapter 3: Programming

Record Sample Mode and Timing (NON-SCPI)

RECord :CONDitioner :SAMPle

:FIELd

[:MODE](?)

;MODE(?)

The RECord:CONDitioner:SAMPle command defines the sample mode
and timing for the specified response field. If multiple fields overlap,
meaning they share common pins, then the sample mode and timing for all
overlapping pins will be set to the parameters defined by the last com-
mand issued. See the RECord:CONDitioner:OFORmat:CARD:CATalog?
command for information about how to query the sample mode and timing
settings for each pin. The RECord:CONDitioner:SAMPle:MODE? query
command returns the sample mode and timing for the specified field.

Selects the SAMPle path of the RECORD:CONDITIONER subsystem.

none

Defines the sample mode and timing values for the default or specified
field. MODE is the default command path. If omitted the parameters
associated with MODE are placed after the SAMPle command.

sample_mode = < EDGE | WINDow >
delay_value = (0 - (clk_per - 5ns))
window_width = (10ns - (clk_per - 10ns))

For delay_value and window_width, values can be specified as a floating
point numeric or in scientific notation using exponential values. Optional
S, MS, US, and NS suffixes can be used for engineering unit multipliers.
The default engineering unit is S (seconds).

EDGE = Used in Edge Sample and Edge Compare, the input pins speci-
fied will be sampled at "t

0
 + delay_value" within the test cycle and either

stored in the record memory, or compared against the expected response
for that vector, as indicated by the RECORD:TRACE controls. If
RECORD:TRACE is set to record DATA, then the state of the input pins
will be stored in the record memory. If RECORD:TRACE is set to record
ERRORS, then for each bit that compares true, a '0' will be stored in the
record memory, and for each bit that compares false, a '1' will be stored in
the record memory.

WINDow = Used in Window Compare, the input pins specified will be
compared against the expected response for the current vector, starting at
"t

0
 + delay_value" and for a duration of window_width. The WINDOW

:SAMPle

Parameter Definition

[:MODE]

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-136

sample mode is intended for use with real-time compare operations,
however, using WINDOW mode to sample data is not precluded.

If RECORD:TRACE is set to record DATA, then the state of the input
pins at the end of the window will be stored in the record memory. If
RECORD:TRACE is set to record ERRORS, then for each bit that com-
pares true for the duration of the window, a '0' will be stored in the record
memory, and for each bit that compares false anytime during the window,
a '1' will be stored in the record memory.

The optional FIELd parameter specifies the record type field that the
SAMPle parameters will act on. Record Field types include Expected
(EXP), DontCare (DON), Expected/Dontcare (ED), Algorithmic Expected
(ALGE), Hardware Expected (HEXP), and Hardware DontCare (HDON).
If the optional FIELd parameter is used, then the FIELd and MODE
parameters must be separated by a semicolon. If the FIELd parameter is
omitted, then the default record field is assumed. The default record field
is defined by the RECord:FIELd command. The field name can also be
specified by the literal string "ALL", where "ALL" refers to all record
type fields.

name = Any alphanumeric string and ‘_’ (max 8 characters).

ALL = All record fields will be set to the same sample timing values.

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

RECORD:CONDITIONER:SAMPLE:FIELD ADDR;MODE EDGE,10ns
REC:COND:SAMP:FIEL DATA;MODE WIND,30ns,50ns
REC:COND:SAMP WIND,5.0e-8,2.22e-8

The MODE? query command will return the sample mode and timing for
the specified field.

name pin_format,delay_value[,pulse_width]

name = The specified field name.
sample_mode = < UNDEFINED | EDGE | WIND >
delay_value = (0 - (clk_per - 5ns))
window_width = (10ns - (clk_per - 10ns))

For delay_value and window_width, units are in seconds and may be
entered in integer of floating point format. They may optionally include
ns, us and ms suffixes and scientific notation.

:FIELd <name | ALL>

Parameter Definition

Examples

:MODE?

Response

Parameter Definition

SR2500 User's Manual 3-137

Rev. 05Interface Technology

Chapter 3: Programming

UNDEFINED = An sample mode has not been defined for the specified
field, or the sample mode has been cleared.

EDGE = Edge Sample/Compare.

WIND = Window Compare.

RECORD:CONDITIONER:SAMPLE:FIELD ADDR;MODE?
ADDR EDGE,1.000000e-8

REC:COND:SAMP:FIEL DATA;MODE?
DATA WIND,3.000000e-8,5.000000e-8

REC:COND:SAMP?
DEFAULT WIND,5.000000e-8,2.220000e-8

Examples

Note

When using an external clock source, edge placement resolution is limited to the fixed edges of that external
clock. An option exists to chooe either positive or negative edges for recording, based upon the following
command:

REC:COND:SAMPLE:FIELD <name | all>:MODE <edge>, <0 | 1>

0 = positive edge, rising edge of clock

1 = negative edge, falling edge of clock

RECORD:CONDITIONER:SAMPLE:FIELD DATA;MODE EDGE 1
REC:COND:SAMP:FIEL ADDR;MODE EDGE 0

RECORD:CONDITIONER:SAMPLE:FIELD DATA;MODE?
DATA EDGE, 1.000000E+00

REC:COND:SAMP:FIEL ADDR;MODE?
ADDR EDGE, 0.000000E+00

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-138

RECord :CONDitioner

The RECord:CONDitioner:SAMPle:CLEar command clears the sample
mode and timing values for the specified record field. The sample mode
will be set to UNDEFINED. Clearing a field's sample mode does not
change either the sample mode nor the timing parameters used by the
hardware. But it does free up the timing generator resources so they may
be defined with new data format and timing parameters.

If multiple record fields share the same timing generator resources, i.e.,
they are defined using pins on the same module and they have identical
timing, then in order to free the timing resources, each field must be
cleared. If multiple fields overlap, meaning they share common pins, then
the sample mode and timing for all overlapping pins will be set to the
parameters defined by the last command issued. See the
RECord:CONDitioner:OFORmat: CARD:CATalog? command for infor-
mation about how to query the sample mode and timing settings for each
pin.

The optional FIELd parameter specifies the record type field on which the
sample mode and timing values will be cleared. Record Field types
include Expected (EXP), DontCare (DON), Expected/Dontcare (ED),
Algorithmic Expected (ALGE), Hardware Expected (HEXP), and Hard-
ware DontCare (HDON). If the optional FIELd parameter is used, then
the FIELd and CLEar strings must be separated by a semicolon. If the
FIELd parameter is omitted, then the default record field is assumed. The
default record field is defined by the RECord:FIELd command. The field
name can also be specified by the literal string "ALL", where "ALL"
refers to all record type fields.

name = Any alphanumeric string and ‘_’ (max 8 characters).

ALL = All record fields will be cleared.

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

:FIELd

:CLEar

Clearing Record Sample Mode and Timing (NON-SCPI)

:SAMPle

;CLEar

:FIELd <name | ALL>

Parameter Definition

SR2500 User's Manual 3-139

Rev. 05Interface Technology

Chapter 3: Programming

Executes the clear function.

none

RECORD:CONDITIONER:SAMPLE:FIELD ADDR;CLEAR
REC:COND:SAMP:CLE

:CLEar

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-140

The RECord:CONDitioner:SAMPle:EOFFset command allows the
Expected data pattern to be offset from the corresponding stimulus vector
in order to compensate for propagation and UUT delays. Only a single
expect offset may be specified for any group of 8 pins. If a single pin in
an 8 pin group is assigned an expect offset, then all pins in the group are
assigned the same offset value and those pins are excluded from being
defined any other EOFFSET value. To clear a defined expect offset for a
field, use the RECord:CONDitioner:SAMPle:CLEar command.

The optional FIELd parameter specifies the record type field that the
expect offset will apply to. Record Field types include Expected (EXP),
DontCare (DON), Expected/Dontcare (ED), Algorithmic Expected
(ALGE), Hardware Expected (HEXP), and Hardware DontCare (HDON).
If the optional FIELd parameter is used, then the FIELd and EOFFset
strings must be separated by a semicolon. If the FIELd parameter is
omitted, then the default record field is assumed. The default record field
is defined by the RECord:FIELd command. The field name can also be
specified by the literal string "ALL", where "ALL" refers to all record
type fields.

name = Any alphanumeric string and ‘_’ (max 8 characters).

ALL = All record fields will be set to the same expect offset value.

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

Defines the number of clock cycles to offset the expected response
relative to the stimulus output for the same vector.

expect_offset = (0 - 7)

RECORD:CONDITIONER:SAMPLE:FIELD DATA;EOFFSET 3
REC:COND:SAMP:EOFF 7

Expected Compare Offset (NON-SCPI)

RECord :CONDitioner

:FIELd

:EOFFset(?):SAMPle

;EOFFset(?)

:FIELd <name | ALL>

Parameter Definition

:EOFFset <expect_offset>

Parameter Definition

Examples

SR2500 User's Manual 3-141

Rev. 05Interface Technology

Chapter 3: Programming

Record Sample Mode and Timing Catalog (NON-SCPI)

RECord :CONDitioner :SAMPle :CARD :CATalog?

The RECord:CONDitioner:::CATalog? query command returns the last
sample mode and timing information for each pin on the specified I/O
module. The RECord:::CATalog? response is not updated after a
RECord::SAMPle:CLEAR command, and will continue to reflect the last
defined sample mode for each pin. Use the RECord:::MODe? query
command to determine if a field's output formatting is UNDEFINED.

The I/O module number to be queried.

card_num = (1 - 18); up to the number of I/O modules installed in the test
system.

ALL = All the I/O Modules installed in the SR2500 test system.

Returns the sample mode and timing information for the specified I/O
module.

{record_pin sample_mode,delay_value[,window_width];}; repeat 32
times for each I/O module specified.

record_pin = C<card_num>P<pin_num>
card_num = (1 - 18)
pin_num = (1-32)
sample_mode = < EDGE | WIND >
delay_value = (0 - (clk_per - 5ns))
window_width = (10ns - (clk_per - 10ns))

For delay_value and pulse_width, units are in seconds and are always
returned in scientific notation. Both delay_value and window_width must
fit within one clock cycle.

REC:COND:SAMP:CARD 1:CAT?
C1P1 EDGE,1.000000e-08;C1P2 EDGE,1.000000e-08;C1P3 EDGE,1.000000e-
08;C1P4 EDGE,1.000000e-08;C1P5 EDGE,1.000000e-08;C1P6
EDGE,1.000000e-08;C1P7 EDGE,1.000000e-08;C1P8 EDGE,1.000000e-
08;C1P9 EDGE,1.000000e-08;C1P10 EDGE,1.000000e-08;C1P11
EDGE,1.000000e-08;C1P12 EDGE,1.000000e-08;C1P13 EDGE,1.000000e-
08;C1P14 EDGE,1.000000e-08;C1P15 EDGE,1.000000e-08;C1P16
EDGE,1.000000e-08;C1P17 WIND,1.000000e-08,2.000000e-08;C1P18
WIND,1.000000e-08,2.000000e-08;C1P19 WIND,1.000000e-08,2.000000e-
08;C1P20 WIND,1.000000e-08,2.000000e-08;C1P21 WIND,1.000000e-
08,2.000000e-08;C1P22 WIND,1.000000e-08,2.000000e-

:CARD <card_num | ALL>

Parameter Definition

:CATalog?

Response

Parameter Definition

Examples

(Continued at bottom of page 144)

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-142

08;C1P23WIND,1.000000e-08,2.000000e-08;C1P24 WIND,1.000000e-
08,2.000000e-08;C1P25 WIND,1.000000e-08,2.000000e-08;C1P26
WIND,1.000000e-08,2.000000e-08;C1P27 WIND,1.000000e-08,2.000000e-
08;C1P28 WIND,1.000000e-08,2.000000e-08;C1P29 WIND,1.000000e-
08,2.000000e-08;C1P30 WIND,1.000000e-08,2.000000e-08;C1P31
WIND,1.000000e-08,2.000000e-08;C1P32 WIND,1.000000e-08,2.000000e-08

Algorithmic Pattern Generation

Algorithmic commands allow real-time generation of stimulus patterns
and expected responses based on simple functions. Used with CMACRO
vector looping commands, algorithmic pattern generation allows ex-
tremely long patterns to be generated using very few actual vectors, and,
they may be generated at full system speeds. Using nested CMACRO
loop counters, literally billions of unique patterns may be generated using
less than a dozen commands, without dead-time or gaps between the
various loop cycles. This makes algorithmic pattern generation ideal for
testing large memory devices or boards.

Each algorithmic field may be programmed with its own commands,
including commands that specify the use of Output and Expect memory
data as the data pattern. This allows mixing of algorithmic and RAM-
backed patterns. Algorithmic commands may be loaded, or queried,
discreetly, or entire ranges of commands may be cleared, filled or copied
using the CLEAR, FILL and COPY editing commands, respectively.

(CONTINUED FROM PAGE 143)

SR2500 User's Manual 3-143

Rev. 05Interface Technology

Chapter 3: Programming

STIMulus :VECTor

:COUNt

:AMACro :FIELD

:PATTern(?)

:CLEar

:COPY :TO

:FIELd

:EXECute

:FILL :PATTern

:EXECute

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-144

RECord :VECTor

:COUNt

:AMACro :FIELD

:PATTern(?)

:CLEar

:COPY :TO

:FIELd

:EXECute

:FILL :PATTern

:EXECute

SR2500 User's Manual 3-145

Rev. 05Interface Technology

Chapter 3: Programming

Stimulus Algorithmic Pattern Generation (NON-SCPI)

STIMulus :VECtor ;COUNt ;AMACro

:PATTern(?)

:FIELd ;PATTern(?)

The STIMulus:;;AMACro:PATTern command loads algorithmic macro
commands to the specified field. The field to be loaded must be defined
as an Algorithmic Output (ALGO) field type. Algorithmic commands
(patterns) will be loaded to the stimulus field starting at the vector location
specified by the VECtor parameter, and will load the number of algorith-
mic commands specified by the COUNt parameter. The
STIMulus:;;AMACro:PATTern? query command returns the algorithmic
commands from the specified field for the range defined by the VECTor
and COUNt parameters.

The initial vector location where algorithmic macro commands will start
loading/querying. The starting vector location must be within the range of
the size of the test (< test_size).

start_vector = (1 to test_size)

The number of algorithmic macro commands that will be loaded/queried.
The number of macro commands can also be specified by the literal string
"ALL", where "ALL" is equal to the number of vectors from the starting
vector location to the last vector in the test. The number of macro com-
mands must not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The AMACro command string provides a path to FIELd and PATTern
parameters.

none

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;AMACro

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-146

The optional FIELd parameter specifies the field where the algorithmic
macro commands will be loaded to (or queried from). The destination
field must be an Algorithmic Output (ALGO) field type. If the FIELd
parameter is used, then the FIELd and PATTern parameters must be
separated by a semicolon. If the FIELd parameter is omitted, then the
default stimulus field is assumed. The default stimulus field is defined by
the STIMulus:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

Specifies the algorithmic command(s) that will be loaded to the ALGO
field. The default algorithmic command is the NONAlgorithmic com-
mand The number of alg_macro elements must be equal to num_vectors.
If a count mismatch occurs, the macro commands will be loaded up to the
number of alg_macro elements provided in the command string, or until
the num_vectors count is reached, whichever is less. An error message
will be generated and the "ERROR" LED on the front panel of the
SR2510 module will be lit. Refer to the SYSTem:ERRor? query com-
mand for information about reading command errors.

alg_macro = The following is a list of valid algorithmic macro com-
mands.

1. NONAlgorithmic
2. INCrement
3. DECrement
4. XOR
5. HOLDData
6. HOLDAll
7. SLEFTZero
8. SLEFTOne
9. SLEFTComplement
10. SRIGHTZero
11. SRIGHTOne
12. SRIGHTComplement
13. RLEFT
14. RRIGHT
15. LOADParam
16. OUTPUTParam

:FIELd <name>

Parameter Definition

:PATTern <alg_macro>{,alg_macro}

Parameter Definition

SR2500 User's Manual 3-147

Rev. 05Interface Technology

Chapter 3: Programming

NONAlgorithmic

The NONAlgorithmic command allows the Stimulus Gate Arrays to act as
a pass through for data from RAM to the output pins. The data which is
passed from RAM to output is also used to initialize the algorithmic
register. This register may be acted upon by other algorithmic commands
to modify the data content.

INCrement

Increment the contents of the algorithmic register and pass the results to
the output pins. If algorithmic fields greater than 8 bits are used, multiple
gate arrays are interlinked. If an increment instruction causes an overflow
in one gate array, the overflow is used as a carry input to the next most
significant gate array, thus extending the count up to a maximum of 232

before roll over.

DECrement

Decrement the contents of the algorithmic register and pass the results to
the output pins. If algorithmic fields greater than 8 bits are used, multiple
gate arrays are interlinked. If a decrement instruction causes an underflow
in one gate array, the underflow is used as a borrow input to the next most
significant gate array, thus extending the count up to a maximum of 232

before roll over.

XOR

The XOR instruction will perform a bitwise exclusive ORing of the
algorithmic register with the contents of Output RAM for that vector. In
this case the RAM data acts as a modifier to the algorithmic register, but
does not directly load it, thus allowing selective bits of the algorithmic
register to be complemented before being passed to the output pins.

HOLDData

Instructs the Stimulus Gate Arrays to hold the state of the algorithmic
register from the previous vector on the output pins. This command
affects only the output data, tristate control for the vector is still provided
from the Tristate RAM.

HOLDAll

The HOLDAll command instructs the Stimulus Gate Arrays to hold the
state of the algorithmic register and the tristate control from the previous
vector on the output pins. This command is similar to the HOLDData
command, however both the output data and tristate control are affected.

Algorithmic Output Command Definitions

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-148

SLEFTZero

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
fill the LSB with 0 and pass the results to the output pins. If algorithmic
fields greater than 8 bits are used, multiple gate arrays are interlinked. In
this case, the MSB output of a less significant gate array is used as a LSB
input to the next most significant gate array, thus extending the shift to a
maximum 32 bits.

SLEFTOne

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
fill the LSB with 1 and pass the results to the output pins. If algorithmic
fields greater than 8 bits are used, multiple gate arrays are interlinked. In
this case, the MSB output of a less significant gate array is used as a LSB
input to the next most significant gate array, thus extending the shift to a
maximum 32 bits.

SLEFTComplement

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
complement the LSB and pass the results to the output pins. If algorith-
mic fields greater than 8 bits are used, multiple gate arrays are interlinked.
In this case, the MSB output of a less significant gate array is used as a
LSB input to the next most significant gate array, thus extending the shift
to a maximum 32 bits.

RLEFT

Rotate the contents of the algorithmic register left (LSB to MSB) one bit,
wrap the MSB to the LSB and pass the results to the output pins. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the MSB output of a less significant gate array is
used as a LSB input to the next most significant gate array and the MSB
of the most significant gate array is wrapped to the LSB of the least
significant gate array, thus extending the rotation to a maximum 32 bits.

SRIGHTZero

Shift the contents of the algorithmic register right (MSB to LSB) one bit,
fill the MSB with 0 and pass the results to the output pins. If algorithmic
fields greater than 8 bits are used, multiple gate arrays are interlinked. In
this case, the LSB output of a more significant gate array is used as a MSB
input to the next least significant gate array, thus extending the shift to a
maximum 32 bits.

SR2500 User's Manual 3-149

Rev. 05Interface Technology

Chapter 3: Programming

SRIGHTOne

Shift the contents of the algorithmic register right (MSB to LSB) one bit,
fill the MSB with 1 and pass the results to the output pins. If algorithmic
fields greater than 8 bits are used, multiple gate arrays are interlinked. In
this case, the LSB output of a more significant gate array is used as a MSB
input to the next least significant gate array, thus extending the shift to a
maximum 32 bits.

SRIGHTComplement

Shift the contents of the algorithmic register right (MSB to LSB) one bit,
complement the MSB and pass the results to the output pins. If algorith-
mic fields greater than 8 bits are used, multiple gate arrays are interlinked.
In this case, the LSB output of a more significant gate array is used as a
MSB input to the next least significant gate array, thus extending the shift
to a maximum 32 bits.

RRIGHT

Rotate the contents of the algorithmic register right (MSB to LSB) one bit,
wrap the LSB to the MSB and pass the results to the output pins. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the LSB output of a more significant gate array is
used as a MSB input to the next least significant gate array and the LSB of
the least significant gate array is wrapped to the MSB of the most signifi-
cant gate array, thus extending the rotation to a maximum 32 bits.

LOADParam

The LOADParm command loads the contents of Output RAM into an
algorithmic holding register internal to the Stimulus Gate Array. This
value may later be passed to the algorithmic register, and placed on the
output pins, using the OUTPUTParam command. This allows test subrou-
tines to be passed a data pattern to use within the routine, such as a
starting address for a RAM read or write cycle. Since the data pattern is
not actually output until the OUTPUTParam command is executed, the
subroutine may run a standard initialization pattern before using the
passed pattern.

OUTPUTParm

Passes the data pattern loaded into the algorithmic holding register by the
LOADParam command, to the algorithmic register and the output pins.
This allows test subroutines to be passed a data pattern to use within the
routine, such as an address for a microprocessor bus cycle. Since the data
pattern is not actually output until the OUTPUTParam command is
executed, the subroutine may run a standard initialization pattern before
using the passed pattern.

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-150

STIMULUS:VECTOR 1;COUNT 1;AMACRO:FIELD ADDR;PATTERN
INCREMENT
STIM:VEC 1;COUN 1;AMAC:PATT INC
STIM:VEC 1;COUN 4;AMAC:PATT NONA,INC,DEC,XOR

The alg_macro parameter is the algorithmic macro command that will be
read from the algorithmic output field. See the
STIMulus:;AMACro::PATTern command for a description of the algorith-
mic macro commands.

alg_macro{,alg_macro}

algo_macro = < NONA | INC | DEC | XOR | HOLDD | HOLDA |
SLEFTZ | SLEFTO | SLEFTC | SRIGHTZ | SRIGHTO | SRIGHTC |
RLEFT | RRIGHT | LOADP | OUTPUTP >

STIMULUS:VECTOR 1;COUNT 4;AMACRO:FIELD ADDR;PATTERN?
NONA,INC,DEC,XOR

STIM:VEC 1;COUN 4;AMAC:PATT?
NONA,INC,HOLDD,INC

Examples

:PATTern?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-151

Rev. 05Interface Technology

Chapter 3: Programming

Clearing Stimulus Algorithmic Memory (NON-SCPI)

STIMulus :VECtor ;COUNt ;AMACro

:CLEar

:FIELd ;CLEar

The STIMulus:;;AMACro:CLEar command clears the algorithmic macro
command memory by loading all "NONAlgorithmic" commands into the
field specified. The field to be cleared must be defined as an Algorithmic
Output (ALGO) field type. Algorithmic commands will be cleared
starting at the vector location specified by the VECtor parameter, and will
clear the number of vectors specified by the COUNt parameter.

The initial vector location where algorithmic macro commands will be
cleared. The starting vector location must be within the range of the size
of the test (< test_size).

start_vector = (1 to test_size)

The number of algorithmic macro command vectors that will be cleared.
The number of algorithmic macro command vectors can also be specified
using the literal string "ALL", where "ALL" is equal to the number of
macro commands from the starting vector location to the last macro
command in the test. The number of macro commands to be cleared must
not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All algorithmic macro commands from the start_vector location to
the last command in the test.

The AMACro command string provides the command path to the FIELd
and CLEar strings.

none

The optional FIELd parameter specifies the field in which the algorithmic
macro commands will be cleared. The field must be an Algorithmic
Output (ALGO) field type. If the FIELd parameter is used, then the
FIELd and CLEar parameters must be separated by a semicolon. If the
FIELd parameter is omitted, then the default stimulus field is assumed.
The default stimulus field is defined by the STIMulus:FIELd command.

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;AMACro

Parameter Definition

:FIELd <name>

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-152

name = Any alphanumeric string and ‘_’ (max 8 characters).

Causes the algorithmic macro commands for the specified field to be
cleared to NONA.

none

STIMULUS:VECTOR 1;COUNT 4;AMACRO:FIELD ADDR;CLEAR
STIM:VEC 1;COUN 4;AMAC:CLE

Parameter Definition

:CLEar

Parameter Definition

Examples

SR2500 User's Manual 3-153

Rev. 05Interface Technology

Chapter 3: Programming

Copying Stimulus Algorithmic Commands (NON-SCPI)

STIMulus :VECtor ;COUNt ;AMACro

;COPY ;TO

:FIELd

;EXECute;FIELd

The STIMulus:;;AMACro:;COPY command copies the algorithmic macro
commands from a source field into a destination field. AMAcro com-
mands will be copied from the source field starting at the vector location
specified by the VECtor parameter, and will copy the number of macro
commands specified by the COUNt parameter. The source field must be
ALGOutput field type. The destination field can be a ALGOutput or
ALGExpected field types.

The initial vector location in the source field where algorithmic macro
commands will be copied from. The starting vector must be within the
range of the size of the test.

source_vector = (1 to test_size)

The number of algorithmic macro commands that will be copied from the
source field to the destination field. The number of macro commands can
also be specified using the literal string "ALL", where "ALL" is equal to
the number of macro commands from the starting vector location to the
last vector in the test. The number of macro commands to be copied must
not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The AMACro command string provides the command path to FIELd and
COPY.

none

The FIELd parameter specifies the source ALGO field that algorithmic
macro commands will be copied from. The source field must be an
Algorithmic Output (ALGO) field type. If the FIELd parameter is omit-
ted, then the default stimulus field is assumed. The default stimulus field
is defined by the STIMulus:FIELd command.

source_name = Any alphanumeric string and ‘_’ (max 8 characters).

:VECtor <source_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;AMACro

Parameter Definition

:FIELd <source_name>

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-154

The COPY command string provides the command path to TO, FIELd,
and EXECute.

none

The initial vector location in the destination memory field where the
algorithmic macro commands will be copied. The destination starting
vector must be within the range of the size of the test and must be small
enough to allow the entire range of algorithmic commands specified by
the source VECTor and COUNt parameters to be transferred.

dest_vector = (1 to test_size)

The FIELd parameter specifies the destination field where the algorithmic
macro commands will be copied. The destination field must be an
ALGOutput field type. If the FIELd parameter is omitted, then the default
stimulus field is assumed. The default stimulus field is defined by the
STIMulus:FIELd command.

dest_name = Any alphanumeric string and ‘_’ (max 8 characters).

Executes the algorithmic COPY command.

none

STIMULUS:VECTOR 1;COUNT 100;AMACRO:FIELD ADDR;COPY:TO
200;FIELD ADDR;EXECUTE

This command copies 100 algorithmic macro commands from vectors 1 -
100 to vectors 200-299. The source and destination field are the same, the
"ADDR" field.

STIM:VECT 50;COUN 10;AMAC:COPY:TO 60;EXECUTE

This command copies 10 macro commands from vectors 50 - 59 to vectors
60 - 69. The source and destination fields are the default field as defined
by the STIMulus:FIELd command and assumed to be of type ALGO.

STIMULUS:VECTOR 1;COUNT ALL;AMAC:FIELD ADDR;COPY:TO
1;FIELD DATA;EXECUTE

This command copies all macro commands from the "ADDR" field to the
"DATA" field.

STIM:VECT 1;COUN 10;AMAC:COPY:TO 11;EXEC;TO 21;EXEC;TO
31;EXEC;TO 41;EXEC

This command defines a block of 10 algorithmic macro commands from
vectors 1 - 10. This macro command block pattern is copied repetitively
to vectors 11 - 20, 21 - 30, 31 - 40, and 41 - 50. The source and destina-
tion field are the default field as defined by the STIMulus:FIELd command
and assumed to be of type ALGO.

;COPY

Parameter Definition

:TO <dest_vector>

Parameter Definition

;FIELd <dest_name>

Parameter Definition

;EXECute

Parameter Definition

Examples

SR2500 User's Manual 3-155

Rev. 05Interface Technology

Chapter 3: Programming

Filling Stimulus Algorithmic Memory (NON-SCPI)

STIMulus :VECtor ;COUNt ;AMACro :FIELd

;FILL

The STIMulus:;;AMACro:;FILL command loads the algorithmic macro
command memory with a specified macro command. The macro com-
mand to be "filled" is specified by the PATTern parameter. The FILL
command will begin loading at the vector location specified by the
VECtor parameter, and will load the number of macro commands speci-
fied by the COUNt parameter

The initial vector location in the destination field where algorithmic macro
commands will start loading. The starting vector location must be within
the range of the size of the test.

start_vector = (1 to test_size)

The number of macro commands that will be loaded to memory. The
number of macro commands can also be specified using the literal string
"ALL", where "ALL" is equal to the number of vectors from the starting
vector location to the last vector in the test. The number of vectors to be
loaded must not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The AMACro command string provides the command path to the FIELd
and FILL strings.

none

The FIELd parameter specifies the destination field where algorithmic
command macros will be loaded. The destination field must be an
ALGOutput field type. If the FIELd parameter is omitted, then the default
stimulus field is assumed. The default stimulus field is defined by the
STIMulus:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

The FILL command string provides the command path to INTerleave,
PATTern, and EXECute strings.

none

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;AMACro

Parameter Definition

:FIELd <name>

Parameter Definition

;FILL

Parameter Definition

:INTerleave ;EXECute;PATTern

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-156

The INTerleave parameter specifies the interval count of the algorithmic
command vector locations to be "filled". For example, if the interleave
count is set to two (2), then every other vector location will be loaded with
the algorithmic command specified. Likewise, if the interleave count is set
to ten (10), then every tenth vector location will be loaded with the
defined command. The default value for int_count is 1.

int_count = (1 - 10)

The alg_macro parameter is the algorithmic macro command that will be
loaded to the destination field. The default algorithmic macro command is
the NONAlgorithmic command, which will output the data pattern that is
in output memory. See the STIMulus:;AMACro::PATTern command for a
description of the algorithmic macro commands.

algo_macro = < NONAlgorithmic | INCrement | DECrement | XOR |
HOLDData | HOLDAll | SLEFTZero | SLEFTOne |
SLEFTComplement | SRIGHTZero | SRIGHTOne |
SRIGHTComplement | RLEFT | RRIGHT | LOADParam |
OUTPUTParam >

Executes the memory FILL command.

none

STIMULUS:VECTOR 1;COUNT 100;AMACRO:FIELD
ADDR;FILL:INTERLEAVE 1;PATTERN INCREMENT;EXECUTE

This command fills 100 vector locations, starting at vector location 1,
with the macro command INCREMENT

STIM:VECT 1;COUN ALL;AMAC:FILL:PATT NONA;EXECUTE

This command fills all vector locations with the macro command
NONAlgorithmic.

:INTerleave <int_count>

Parameter Definition

:PATTern <alg_macro>

Parameter Definition

;EXECute

Parameter Definition

Examples

SR2500 User's Manual 3-157

Rev. 05Interface Technology

Chapter 3: Programming

Response Algorithmic Pattern Generation (NON-SCPI)

RECord :VECtor ;COUNt ;AMACro

:PATTern(?)

:FIELd ;PATTern(?)

The RECord:;;AMACro:PATTern command loads algorithmic macro
commands to the specified field. The field to be loaded must be defined
as an Algorithmic Expect (ALGE) field type. Algorithmic commands
(patterns) will be loaded to the record field starting at the vector location
specified by the VECtor parameter, and will load the number of algorith-
mic commands specified by the COUNt parameter. The
RECord:;;AMACro:PATTern? query command returns the algorithmic
commands from the specified field for the range defined by the VECTor
and COUNt parameters.

The initial vector location where algorithmic macro commands will start
loading/querying. The starting vector location must be within the range of
the size of the test.

start_vector = (1 to test_size)

The number of algorithmic macro commands that will be loaded/queried.
The number of macro commands can also be specified by the literal string
"ALL", where "ALL" is equal to the number of vectors from the starting
vector location to the last vector in the test. The number of macro com-
mands must not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The AMACro command string provides a path to FIELd and PATTern
parameters.

none

The optional FIELd parameter specifies the field where the algorithmic
macro commands will be loaded to (or queried from). The destination
field must be an Algorithmic Expect (ALGE) field type. If the FIELd
parameter is used, then the FIELd and PATTern parameters must be

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;AMACro

Parameter Definition

:FIELd <name>

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-158

separated by a semicolon. If the FIELd parameter is omitted, then the
default record field is assumed. The default record field is defined by the
RECord:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

Specifies the algorithmic command(s) that will be loaded to the ALGE
field. The default algorithmic command is the NONAlgorithmic com-
mand The number of alg_macro elements must be equal to num_vectors.
If a count mismatch occurs, the macro commands will be loaded up to the
number of alg_macro elements provided in the command string, or until
the num_vectors count is reached, whichever is less. An error message
will be generated and the "ERROR" LED on the front panel of the
SR2510 module will be lit. Refer to the SYSTem:ERRor? query com-
mand for information about reading command errors.

alg_macro = The following is a list of valid algorithmic macro com-
mands.

1. NONAlgorithmic
2. INCrement
3. DECrement
4. XOR
5. HOLDData
6. HOLDAll
7. SLEFTZero
8. SLEFTOne
9. SLEFTComplement
10. SRIGHTZero
11. SRIGHTOne
12. SRIGHTComplement
13. RLEFT
14. RRIGHT
15. LOADParam
16. OUTPUTParam

Parameter Definition

:PATTern <alg_macro>{,alg_macro}

Parameter Definition

SR2500 User's Manual 3-159

Rev. 05Interface Technology

Chapter 3: Programming

NONAlgorithmic

The NONAlgorithmic command allows the Response Gate Arrays to act
as a pass through for data from RAM to the expect comparators. The data
which is passed from RAM is also used to initialize the algorithmic
register. This register may be acted upon by other algorithmic commands
to modify the data content.

INCrement

Increment the contents of the algorithmic register and pass the results to
the expect comparators. If algorithmic fields greater than 8 bits are used,
multiple gate arrays are interlinked. If an increment instruction causes an
overflow in one gate array, the overflow is used as a carry input to the next
most significant gate array, thus extending the count up to a maximum of
232 before roll over.

DECrement

Decrement the contents of the algorithmic register and pass the results to
the expect comparators. If algorithmic fields greater than 8 bits are used,
multiple gate arrays are interlinked. If a decrement instruction causes an
underflow in one gate array, the underflow is used as a borrow input to the
next most significant gate array, thus extending the count up to a maxi-
mum of 232 before roll over.

XOR

The XOR instruction will perform a bitwise exclusive ORing of the
algorithmic register with the contents of Expect RAM for that vector. In
this case the RAM data acts as a modifier to the algorithmic register, but
does not directly load it, thus allowing selective bits of the algorithmic
register to be complemented before being passed to the expect compara-
tors.

HOLDData

Instructs the Response Gate Arrays to hold the state of the algorithmic
register from the previous vector on the expect comparators. This com-
mand affects only the expect data, Dontcare masks for the vector are still
provided from the Dontcare RAM.

HOLDAll

The HOLDAll command instructs the Response Gate Arrays to hold the
state of the algorithmic register and the mask control from the previous

Algorithmic Expect Command Definitions

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-160

vector on the expect comparators. This command is similar to the
HOLDData command, however both the expect data and dontcare control
are affected.

SLEFTZero

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
fill the LSB with 0 and pass the results to the expect comparators. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the MSB output of a less significant gate array is
used as a LSB input to the next most significant gate array, thus extending
the shift to a maximum 32 bits.

SLEFTOne

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
fill the LSB with 1 and pass the results to the expect comparators. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the MSB output of a less significant gate array is
used as a LSB input to the next most significant gate array, thus extending
the shift to a maximum 32 bits.

SLEFTComplement

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
complement the LSB and pass the results to the expect comparators. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the MSB output of a less significant gate array is
used as a LSB input to the next most significant gate array, thus extending
the shift to a maximum 32 bits.

RLEFT

Rotate the contents of the algorithmic register left (LSB to MSB) one bit,
wrap the MSB to the LSB and pass the results to the expect comparators.
If algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the MSB output of a less significant gate array is
used as a LSB input to the next most significant gate array and the MSB
of the most significant gate array is wrapped to the LSB of the least
significant gate array, thus extending the rotation to a maximum 32 bits.

SRIGHTZero

Shift the contents of the algorithmic register right (MSB to LSB) one bit,
fill the MSB with 0 and pass the results to the expect comparators. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the LSB output of a more significant gate array is
used as a MSB input to the next least significant gate array, thus extending
the shift to a maximum 32 bits.

SR2500 User's Manual 3-161

Rev. 05Interface Technology

Chapter 3: Programming

SRIGHTOne

Shift the contents of the algorithmic register right (MSB to LSB) one bit,
fill the MSB with 1 and pass the results to the expect comparators. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the LSB output of a more significant gate array is
used as a MSB input to the next least significant gate array, thus extending
the shift to a maximum 32 bits.

SRIGHTComplement

Shift the contents of the algorithmic register right (MSB to LSB) one bit,
complement the MSB and pass the results to the expect comparators. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the LSB output of a more significant gate array is
used as a MSB input to the next least significant gate array, thus extending
the shift to a maximum 32 bits.

RRIGHT

Rotate the contents of the algorithmic register right (MSB to LSB) one bit,
wrap the LSB to the MSB and pass the results to the expect comparators.
If algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the LSB output of a more significant gate array is
used as a MSB input to the next least significant gate array and the LSB of
the least significant gate array is wrapped to the MSB of the most signifi-
cant gate array, thus extending the rotation to a maximum 32 bits.

LOADParam

The LOADParm command loads the contents of Expect RAM into an
algorithmic holding register internal to the Response Gate Array. This
value may later be passed to the algorithmic register, and placed on the
expect comparators, using the OUTPUTParam command. This allows test
subroutines to be passed a data pattern to use within the routine, such as a
starting address for a RAM read or write cycle. Since the data pattern is
not actually passed to the expect comparators until the OUTPUTParam
command is executed, the subroutine may compare against a standard
initialization pattern before using the passed pattern.

OUTPUTParm

Passes the data pattern loaded into the algorithmic holding register by the
LOADParam command, to the algorithmic register and the expect com-
parators. This allows test subroutines to be passed a data pattern to use
within the routine, such as a starting address for a microprocessor bus
cycle. Since the data pattern is not actually passed to the expect compara-
tors until the OUTPUTParam command is executed, the subroutine may

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-162

compare against a standard initialization pattern before using the passed
pattern.

RECORD:VECTOR 1;COUNT 1;AMACRO:FIELD ADDR;PATTERN INCRE-
MENT
REC:VEC 1;COUN 1;AMAC:PATT INC
REC:VEC 1;COUN 4;AMAC:PATT NONA,INC,DEC,XOR

The alg_macro parameter is the algorithmic macro command that will be
read from the algorithmic expect field. See the
RECord:;AMACro::PATTern command for a description of the algorith-
mic macro commands.

alg_macro{,alg_macro}

algo_macro = < NONA | INC | DEC | XOR | HOLDD | HOLDA |
SLEFTZ | SLEFTO | SLEFTC | SRIGHTZ | SRIGHTO | SRIGHTC |
RLEFT | RRIGHT | LOADP | OUTPUTP >

RECORD:VECTOR 1;COUNT 4;AMACRO:FIELD ADDR;PATTERN?
NONA,INC,DEC,XOR

REC:VEC 1;COUN 4;AMAC:PATT?
NONA,INC,HOLDD,INC

Examples

:PATTern?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-163

Rev. 05Interface Technology

Chapter 3: Programming

Clearing Response Algorithmic Memory (NON-SCPI)

RECord :VECtor ;COUNt ;AMACro

:CLEar

:FIELd ;CLEar

The RECord:;;AMACro:CLEar command clears the algorithmic macro
command memory by loading all "NONAlgorithmic" commands into the
field specified. The field to be cleared must be defined as an Algorithmic
Expect (ALGE) field type. Algorithmic commands will be cleared
starting at the vector location specified by the VECtor parameter, and will
clear the number of vector specified by the COUNt parameter.

The initial vector location where algorithmic macro commands will be
cleared. The starting vector location must be within the range of the size
of the test.

start_vector = (1 to test_size)

The number of algorithmic macro command vectors that will be cleared.
The number of algorithmic macro command vectors can also be specified
using the literal string "ALL", where "ALL" is equal to the number of
macro commands from the starting vector location to the last macro
command in the test. The number of macro commands to be cleared must
not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All algorithmic macro commands from the start_vector location to
the last command in the test.

The AMACro command string provides the command path to the FIELd
and CLEar strings.

none

The optional FIELd parameter specifies the field in which the algorithmic
macro commands will be cleared. The field must be an Algorithmic
Expect (ALGE) field type. If the FIELd parameter is used, then the FIELd
and CLEar parameters must be separated by a semicolon. If the FIELd
parameter is omitted, then the default record field is assumed. The default
record field is defined by the RECord:FIELd command.

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;AMACro

Parameter Definition

:FIELd <name>

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-164

Parameter Definition name = Any alphanumeric string and ‘_’ (max 8 characters).

Causes the algorithmic macro commands for the specified field to be
cleared to NONA.

none

RECORD:VECTOR 1;COUNT 4;AMACRO:FIELD ADDR;CLEAR
REC:VEC 1;COUN 4;AMAC:CLE

:CLEar

Parameter Definition

Examples

SR2500 User's Manual 3-165

Rev. 05Interface Technology

Chapter 3: Programming

Copying Response Algorithmic Commands (NON-SCPI)

RECord :VECtor ;COUNt ;AMACro

;COPY ;TO

:FIELd

;EXECute;FIELd

The RECord:;;AMACro:;COPY command copies the algorithmic macro
commands from a source field into a destination field. AMAcro com-
mands will be copied from the source field starting at the vector location
specified by the VECtor parameter, and will copy the number of macro
commands specified by the COUNt parameter. The source field and
destination field must be ALGExpected field types.

The initial vector location in the source field where algorithmic macro
commands will be copied from. The starting vector must be within the
range of the size of the test.

source_vector = (1 to test_size)

The number of algorithmic macro commands that will be copied from the
source field to the destination field. The number of macro commands can
also be specified using the literal string "ALL", where "ALL" is equal to
the number of macro commands from the starting vector location to the
last vector in the test. The number of macro commands to be copied must
not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The AMACro command string provides the command path to FIELd and
COPY.

none

The FIELd parameter specifies the source ALGE field that algorithmic
macro commands will be copied from. The source field must be an
Algorithmic Expect (ALGE) field type. If the FIELd parameter is omit-
ted, then the default record field is assumed. The default record field is
defined by the RECord:FIELd command.

source_name = Any alphanumeric string and ‘_’ (max 8 characters).

The COPY command string provides the command path to TO, FIELd,

:VECtor <source_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;AMACro

Parameter Definition

:FIELd <source_name>

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-166

and EXECute.

none

The initial vector location in the destination field where the algorithmic
macro commands will be copied. The destination starting vector must be
within the range of the size of the test (£ test_size) and must be small
enough to allow the entire range of algorithmic commands specified by
the source VECTor and COUNt parameters to be transferred.

dest_vector = (1 to test_size)

The FIELd parameter specifies the destination field where the algorithmic
macro commands will be copied. The destination field must be an
ALGExpected field type. If the FIELd parameter is omitted, then the
default record field is assumed. The default record field is defined by the
RECord:FIELd command.

dest_name = Any alphanumeric string and ‘_’ (max 8 characters).

Executes the algorithmic COPY command.

none

RECORD:VECTOR 1;COUNT 100;AMACRO:FIELD ADDR;COPY:TO
200;FIELD ADDR;EXECUTE

This command copies 100 algorithmic macro commands from vectors 1 -
100 to vectors 200-299. The source and destination field are the same, the
"ADDR" field.

REC:VECT 50;COUN 10;AMAC:COPY:TO 60;EXECUTE

This command copies 10 macro commands from vectors 50 - 59 to vectors
60 - 69. The source and destination fields are the default field as defined
by the RECord:FIELd command and assumed to be of type ALGE.

RECORD:VECTOR 1;COUNT ALL;AMAC:FIELD ADDR;COPY:TO 1;FIELD
DATA;EXECUTE

This command copies all macro commands from the "ADDR" field to the
"DATA" field.

REC:VECT 1;COUN 10;AMAC:COPY:TO 11;EXEC;TO 21;EXEC;TO
31;EXEC;TO 41;EXEC

This command defines a block of 10 algorithmic macro commands from
vectors 1 - 10. This macro command block pattern is copied repetitively
to vectors 11 - 20, 21 - 30, 31 - 40, and 41 - 50. The source and destina-
tion field are the default field as defined by the RECord:FIELd command
and assumed to be of type ALGE.

;COPY

Parameter Definition

:TO <dest_vector>

Parameter Definition

;FIELd <dest_name>

Parameter Definition

;EXECute

Parameter Definition

Examples

SR2500 User's Manual 3-167

Rev. 05Interface Technology

Chapter 3: Programming

Filling Response Algorithmic Memory (NON-SCPI)

RECord :VECtor ;COUNt ;AMACro :FIELd

;FILL

The RECord:;;AMACro:;FILL command loads the algorithmic macro
command memory with a specified macro command. The macro com-
mand to be "filled" is specified by the PATTern parameter. The FILL
command will begin loading at the vector location specified by the
VECtor parameter, and will load the number of macro commands speci-
fied by the COUNt parameter

The initial vector location in the destination field where algorithmic macro
commands will start loading. The starting vector location must be within
the range of the size of the test.

start_vector = (1 to test_size)

The number of macro commands that will be loaded to memory. The
number of macro commands can also be specified using the literal string
"ALL", where "ALL" is equal to the number of vectors from the starting
vector location to the last vector in the test. The number of vectors to be
loaded must not exceed the last vector in the test.

num_vectors = (1 to ((test_size-start_vector) + 1)

ALL = All vectors from the start_vector location to the last vector in the
test.

The AMACro command string provides the command path to the FIELd
and FILL strings.

none

The FIELd parameter specifies the destination field where algorithmic
command macros will be loaded. The destination field must be an
ALGExpect field type. If the FIELd parameter is omitted, then the default
record field is assumed. The default record field is defined by the
RECord:FIELd command.

name = Any alphanumeric string and ‘_’ (max 8 characters).

The FILL command string provides the command path to INTerleave,
PATTern, and EXECute strings.

none

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;AMACro

Parameter Definition

:FIELd <name>

Parameter Definition

;FILL

Parameter Definition

:INTerleave ;EXECute;PATTern

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-168

The INTerleave parameter specifies the interval count of the algorithmic
command vector locations to be "filled". For example, if the interleave
count is set to two (2), then every other vector location will be loaded with
the algorithmic command specified. Likewise, if the interleave count is set
to ten (10), then every tenth vector location will be loaded with the
defined command. The default value for int_count is 1.

int_count = (1 - 10)

The alg_macro parameter is the algorithmic macro command that will be
loaded to the destination field. The default algorithmic macro command is
the NONAlgorithmic command, which will use the data pattern that is in
expect memory for the real-time compare. See the
RECord:;AMACro::PATTern command for a description of the algorith-
mic macro commands.

algo_macro = < NONAlgorithmic | INCrement | DECrement | XOR |
HOLDData | HOLDAll | SLEFTZero | SLEFTOne |
SLEFTComplement | SRIGHTZero | SRIGHTOne |
SRIGHTComplement | RLEFT | RRIGHT | LOADParam |
OUTPUTParam >

Executes the memory FILL command.

none

RECORD:VECTOR 1;COUNT 100;AMACRO:FIELD
ADDR;FILL:INTERLEAVE 1;PATTERN INCREMENT;EXECUTE

This command fills 100 vector locations, starting at vector location 1,
with the macro command INCREMENT

REC:VECT 1;COUN ALL;AMAC:FILL:PATT NONA;EXECUTE

This command fills all vector locations with the macro command
NONAlgorithmic.

:INTerleave <int_count>

Parameter Definition

:PATTern <alg_macro>

Parameter Definition

;EXECute

Parameter Definition

Examples

SR2500 User's Manual 3-169

Rev. 05Interface Technology

Chapter 3: Programming

THIS PAGE INTENTIONALLY LEFT BLANK

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-170

Data patterns may be loaded into memory in binary format instead of
using the SCPI command strings. This provides a significant speed
advantage over text based transfers for 3 reasons. In ASCII text based
transfers, each character transferred requires multiple VXI read/write
cycles. This is due to the VXI Word Serial Protocols which implement a
multi-cycle handshake for each transfer. The binary transfer is accom-
plished via direct VME/VXI reads and writes, so a new data pattern is
transferred on each bus cycle. Second, each text character transferred
represents only a maximum of 4 bits of data. Binary transfers are per-
formed using D32, so each transfer represents a full 32 bits of data.
Finally, text transfers must be processed in order to determine where the
data will ultimately be sent. Parsing and processing the command can
require a significant amount of microprocessor overhead. Binary transfers
do not require any parsing or processing.

In order to transfer data in binary format you must first load the 1 MByte
A32 memory on the SR2510 Timing/Control Board with the desired data.
This process is performed by the slot 0 controller using the memory move
function which are typically provided with the slot 0. The data is always
represented as 32 bits, regardless of how many bits are actually used,
however, the data may be transferred from the slot 0 to the A32 memory
using D8, D16 or D32 transfers. The A32 memory is assigned an offset
address during the VXI power-up by the slot 0 Resource Management
routines. This offset address is where the slot 0 must send the binary data.

Next you would send the SCPI command instruction the SR2510 Timing/
Control Board to transfer the data in its A32 memory to I/O memory.
There are two methods for the Timing/Control Board to transfer the data,
MAP and NOMAP. The MAP method uses field definitions to determine
pin mapping. This requires microprocessor overhead, so is not as fast as
the NOMAP method. The NOMAP method transfers data to a specific
pattern memory on a specific I/O module. There is no pin mapping
process, so the transfers are much faster. All data transferred between the
SR2510 A32 memory and the I/O module pattern memories use D32
transfers.

High Speed Binary Pattern Transfers

SR2500 User's Manual 3-171

Rev. 05Interface Technology

Chapter 3: Programming

STIMulus :VECTor

:COUNt

:DATA

:TYPe:BLOCk

:FIELd

:CARD

:MEMory

:PATTern(?)

RECord :VECTor

:COUNt

:DATA

:TYPe:BLOCk

:FIELd

:CARD

:MEMory

:PATTern(?)

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-172

Stimulus Mapped Binary Patterns (NON-SCPI)

STIMulus :VECTor ;COUNt ;DATA

:FIELd

:BLOCk

;BLOCk

:TYPE MAP ;PATTern(?)

The STIMulus:;;:BLOCk:TYPE MAP;PATTern command downloads the
contents of the SR2510 A32 memory into the specified I/O module
stimulus type memory field using the Pin Mapping method. Binary data
patterns will be loaded starting at the vector location specified by the
VECtor parameter, and will load the number of vector words specified by
the COUNt parameter. The STIMulus:;;:BLOCk:TYPE MAP; PATTern?
query command uploads the binary data pattern from the specified stimu-
lus memory field into the SR2510 A32 memory using the Pin Mapping
method.

The initial vector location where data will start transferring to/from
stimulus memory. The starting vector must be within the range of the size
of the test.

start_vector = (1 to test_size)

The number of vector words that will be transferred to/from memory. The
number of vectors can also be specified by the literal string "ALL", where
"ALL" is equal to the number of vectors from the starting vector location
to the last vector in the test. The number of vectors to be transferred must
not exceed the last vector in the test.

num_vectors = (1 to ((test_size - start_vector) + 1))

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the BLOCk
parameter.

none

The FIELd parameter specifies the memory field where data patterns will
be loaded to/from. Valid field types for the source FIELd parameter are
Output (OUT), Tristate (TRI), Algorithmic Output (ALGO), Hardware
Output, (HOUT), and Hardware Tristate (HTRI).

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

Parameter Definition

:FIELd <name>

SR2500 User's Manual 3-173

Rev. 05Interface Technology

Chapter 3: Programming

Hardware Type fields (HOUT and HTRI) will be downloaded using the
same block transfer mode as the NOMAP Block transfer method since
Hardware Type fields are unmapped (defined on physical pin-card bound-
aries). Output/Tristate (OT) type fields are not valid for A32 block
transfers.

If the FIELd parameter option is used, then the FIELd and BLOCk param-
eters must be separated by a semicolon as shown in the example below. If
the FIELd parameter is omitted, then the default memory field is assumed.
The default memory field is defined by the STIMulus:FIELd command.
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

name = Any alphanumeric string and ‘_’ (max 8 characters).

The BLOCk command string provides the command path to the TYPE and
PATTERN parameters.

none

The TYPE parameter defines the method that data patterns will be trans-
ferred. The MAP option uses field definitions to determine pin mapping.

MAP = Pin Mapping transfer method.

The PATTern string terminates the command and executes the block
transfer from A32 memory to the stimulus memory field.

none

STIMULUS:VECTOR 1;COUNT 1000;DATA:FIELD ADDR;BLOCK:TYPE
MAP;PATTERN
STIM:VECT 1;COUN ALL;DATA:BLOCK:TYPE MAP;PATT

The PATTern string terminates the command and executes the block
transfer from the stimulus memory field to the SR2510 A32 memory..

none

STIMULUS:VECTOR 1;COUNT 1000;DATA:FIELD ADDR;BLOCK:TYPE
MAP;PATTERN?
STIM:VEC 1;COUN ALL;DATA:BLOCK:TYPE MAP;PATT?

Parameter Definition

:BLOCk

Parameter Definition

:TYPE MAP

Parameter Definition

;PATTern

Parameter Definition

Examples

:PATTern?

Response

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-174

Stimulus Non-Mapped Binary Patterns (NON-SCPI)

STIMulus :VECTor ;COUNt ;DATA :BLOCk

;CARD ;MEMory ;PATTern(?)

The STIMulus:;;:BLOCk:TYPE NOMAP;PATTern command downloads
the contents of the SR2510 A32 memory into the specified I/O module
stimulus type memory using the Hardware Mapping (NOMAP) method.
Binary data patterns will be loaded to the Output or Tristate memory
starting at the vector location specified by the VECtor parameter, and will
load the number of vector words specified by the COUNt parameter.

The STIMulus:;;:BLOCk:TYPE NOMAP; PATTern? query command
uploads the binary data pattern from the specified Output or Tristate
memory into the SR2510 A32 memory using the Hardware Mapping
(NOMAP) method.

The initial vector location where data will start transferring to/from
stimulus memory. The starting vector must be within the range of the size
of the test.

start_vector = (1 to test_size)

The number of vector words that will be transferred to/from memory. The
number of vectors can also be specified by the literal string "ALL", where
"ALL" is equal to the number of vectors from the starting vector location
to the last vector in the test. The number of vectors to be transferred must
not exceed the last vector in the test.

num_vectors = (1 to ((test_size - start_vector) + 1))

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the BLOCk
parameter.

none

The BLOCk command string provides the command path to the TYPE
,CARD, MEMory, and PATTERN parameters.

none

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

Parameter Definition

:BLOCk

Parameter Definition

:TYPE
NOMAP

SR2500 User's Manual 3-175

Rev. 05Interface Technology

Chapter 3: Programming

The TYPE parameter defines the method that data patterns will be trans-
ferred. The NOMAP option uses card number and memory type for
download source/destination.

NOMAP = Hardware Mapping transfer method.

The CARD parameter defines the source or destination I/O module (card)
that data patterns will transferred to/from. The card number can also be
specified by the literal string "ALL", where the contents of the SR2510
A32 memory will be transferred (memory write) to "ALL" the I/O cards.
If "ALL" I/O cards are selected for transfers to the SR2510 A32 memory
(memory read) , then the SR2510 A32 memory will contain only the data
contents of the last I/O card.

card_num = (1 - 18); up to the maximum number of I/O cards installed
in the SR2500 system.

ALL = All I/O cards installed in the SR2500 system.

The MEMory parameter defines the source or destination stimulus
memory type that data patterns will transferred to/from.

OUTput = Output memory.

TRIstate = Tristate memory.

The PATTern string terminates the command and executes the block
transfer from A32 memory to the stimulus memory.

none

STIMULUS:VECTOR 1;COUNT 1000;DATA:BLOCK:TYPE NOMAP;CARD
1;MEMORY OUTPUT;PATTERN
STIM:VECT 1;COUN ALL;DATA:BLOC:TYPE NOMAP;CARD 1;MEM
OUT;PATT

The PATTern string terminates the command and executes the block
transfer from the stimulus memory to the SR2510 A32 memory..

none

STIMULUS:VECTOR 1;COUNT 1000;DATA:BLOCK:TYPE NOMAP;CARD
1;MEMORY OUTPUT;PATTERN?
STIM:VEC 1;COUN ALL;DATA:BLOC:TYPE NOMAP;CARD 1;MEM
OUT;PATT?

Parameter Definition

:TYPE NOMAP

;CARD <card_num | ALL>

Parameter Definition

;MEMory <OUTput | TRIstate>

Parameter Definition

:PATTern

Parameter Definition

Examples

:PATTern?

Response

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-176

Record Mapped Binary Patterns (NON-SCPI)

RECord :VECTor ;COUNt ;DATA

:FIELd

:BLOCk

;BLOCk

:TYPE MAP ;PATTern(?)

The RECord:;;:BLOCk:TYPE MAP;PATTern command downloads the
contents of the SR2510 A32 memory into the specified I/O module record
type field using the Pin Mapping method. Binary data patterns will be
loaded starting at the vector location specified by the VECtor parameter,
and will load the number of vector words specified by the COUNt param-
eter. RECord :;;:BLOCk:TYPE MAP;PATTern? query command uploads
the binary data pattern from the specified record memory field into the
SR2510 A32 memory using the Pin Mapping method.

The initial vector location where data will start transferring to/from record
memory. The starting vector must be within the range of the size of the
test.

start_vector = (1 to test_size)

The number of vector words that will be transferred to/from record
memory. The number of vectors can also be specified by the literal string
"ALL", where "ALL" is equal to the number of vectors from the starting
vector location to the last vector in the test. The number of vectors to be
transferred must not exceed the last vector in the test.

num_vectors = (1 to ((test_size - start_vector) + 1))

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the BLOCk
parameter.

none

The FIELd parameter specifies the memory field where data patterns will
be loaded to/from. Valid field types for block memory read transfers are
Record (REC), Expected (EXP), Dontcare (DON), Algorithmic Expected
(ALGE), Hardware Record (HREC), Hardware Expected, (HEXP), and
Hardware Dontcare (HDON).

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

Parameter Definition

:FIELd <name>

SR2500 User's Manual 3-177

Rev. 05Interface Technology

Chapter 3: Programming

Parameter Definition

:BLOCk

Parameter Definition

Parameter Definition

:TYPE MAP

Parameter Definition

;PATTern

REC and HREC type fields can be uploaded into SR2510 A32 memory,
but cannot be downloaded because these field types are 'read only'
memory. Hardware type fields (HEXP and HTRI) will be downloaded
using the same block transfer mode as the NOMAP Block transfer method
since Hardware Type fields are unmapped (defined on physical pin-card
boundaries). Expected/Dontcare (ED) type fields are not valid for A32
block transfers.

If the FIELd parameter option is used, then the FIELd and BLOCk param-
eters must be separated by a semicolon as shown in the example below. If
the FIELd parameter is omitted, then the default memory field is assumed.
The default memory field is defined by the RECord:FIELd command.
The FIELd parameter changes the destination field only for the same
command but does not change the default field.

name = Any alphanumeric string and ‘_’ (max 8 characters).

The BLOCk command string provides the command path to the TYPE and
PATTERN parameters.

none

The TYPE parameter defines the method that data patterns will be trans-
ferred. The MAP option uses field definitions to determine pin mapping.

MAP = Pin Mapping transfer method.

The PATTern string terminates the command and executes the block
transfer from A32 memory to the stimulus memory field.

none

STIMULUS:VECTOR 1;COUNT 1000;DATA:FIELD ADDR;BLOCK:TYPE
MAP;PATTERN
STIM:VECT 1;COUN ALL;DATA:BLOCK:TYPE MAP;PATT

The PATTern string terminates the command and executes the block
transfer from the stimulus memory field to the SR2510 A32 memory..

none

STIMULUS:VECTOR 1;COUNT 1000;DATA:FIELD ADDR;BLOCK:TYPE
MAP;PATTERN?
STIM:VEC 1;COUN ALL;DATA:BLOCK:TYPE MAP;PATT?

Examples

:PATTern?

Response

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-178

Record Non-Mapped Binary Patterns (NON-SCPI)

The RECord:;;:BLOCk:TYPE NOMAP;PATTern command downloads
the contents of the SR2510 A32 memory into the specified I/O module
record type memory using the Hardware Mapping (NOMAP) method.
Binary data patterns will be loaded to the Expect or Dontcare memory
starting at the vector location specified by the VECtor parameter, and will
load the number of vector words specified by the COUNt parameter.

The STIMulus:;;:BLOCk:TYPE MAP; PATTern? query command uploads
the binary data pattern from the specified Expect, Dontcare or Record
memory into the SR2510 A32 memory using the Hardware Mapping
(NOMAP) method.

The initial vector location where data will start transferring to/from record
memory. The starting vector must be within the range of the size of the
test (< test_size).

start_vector = (1 to test_size)

The number of vector words that will be transferred to/from memory. The
number of vectors can also be specified by the literal string "ALL", where
"ALL" is equal to the number of vectors from the starting vector location
to the last vector in the test. The number of vectors to be transferred must
not exceed the last vector in the test.

num_vectors = (1 to ((test_size - start_vector) + 1))

ALL = All vectors from the start_vector location to the last vector in the
test.

The DATA command string provides the command path to the BLOCk
parameter.

none

The BLOCk command string provides the command path to the TYPE
,CARD, MEMory, and PATTERN parameters.

none

The TYPE parameter defines the method that data patterns will be trans-
ferred. The NOMAP option uses card number and memory type for
download source/destination.

RECord :VECTor ;COUNt ;DATA :BLOCk

;CARD ;MEMory ;PATTern(?)

:VECtor <start_vector>

Parameter Definition

;COUNt <num_vectors | ALL>

Parameter Definition

;DATA

Parameter Definition

:BLOCk

Parameter Definition

:TYPE NOMAP

:TYPE
NOMAP

SR2500 User's Manual 3-179

Rev. 05Interface Technology

Chapter 3: Programming

NOMAP = Hardware Mapping transfer method.

The CARD parameter defines the source or destination I/O module (card)
that data patterns will transferred to/from. The card number can also be
specified by the literal string "ALL", where the contents of the SR2510
A32 memory will be transferred (memory write) to "ALL" the I/O cards.
If "ALL" I/O cards are selected for transfers to the SR2510 A32 memory
(memory read) , then the SR2510 A32 memory will contain only the data
contents of the last I/O card.

card_num = (1 - 18); up to the maximum number of I/O cards installed
in the SR2500 system.

ALL = All I/O cards installed in the SR2500 system.

The MEMory parameter defines the source or destination record memory
type that data patterns will transferred to/from.

EXPect = Expect memory.
DONtcare = Dontcare memory.
RECord = Record memory.

The PATTern string terminates the command and executes the block
transfer from A32 memory to the record memory.

none

RECORD:VECTOR 1;COUNT 1000;DATA:BLOCK:TYPE NOMAP;CARD
1;MEMORY EXPECT;PATTERN
REC:VECT 1;COUN ALL;DATA:BLOC:TYPE NOMAP;CARD 1;MEM
EXP;PATT

The PATTern string terminates the command and executes the block
transfer from the record memory to the SR2510 A32 memory..

none

RECORD:VECTOR 1;COUNT 1000;DATA:BLOCK:TYPE NOMAP;CARD
1;MEMORY RECORD;PATTERN?
REC:VEC 1;COUN ALL;DATA:BLOC:TYPE NOMAP;CARD 1;MEM
REC;PATT?

Parameter Definition

;CARD <card_num | ALL>

Parameter Definition

;MEMory <EXPect | DONtcare | RECord>

Parameter Definition

:PATTern

Parameter Definition

Examples

:PATTern?

Response

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-180

Two methods exist to read and save a test from the SR2510 to a slot 0
controller. The first method, which will not be discussed, is to query each
individual parameter in the SR2500 system using a SCPI command string,
parse the ASCII text response to strip out the relevant information, append
the appropriate header to this information, then store the results to a file.
The second method is to use the LEARn and LEARn? query commands to
read the entire test, via the SR2510 A32 memory. Each time a SCPI
command is sent to the SR2510, the system processor must parse the
command string in order to determine what action to take. The "action"
will, ultimately consists of modifying data at various memory locations
within the SR2500 system. In effect, parsing SCPI commands is the same
as performing an incremental compile of a SCPI test program. The
compiling is taking place on the SR2510, and the results stored on the
SR2510 and the I/O modules. LEARn? query and LEARn allow you to
read the compiled test program from the SR2500 system, or write a
previously read compiled test back to the SR2500 system, respectively.

The LEARn and LEARn? query method provides a significant speed
advantage over text based transfers for 3 reasons. First, in text based
transfers, each character transferred requires multiple VXI read/write
cycles. This is due to the VXI Word Serial Protocols which implement a
multi-cycle handshake for each transfer. Using the LEARn and LEARn?
query commands, setup and data are read in binary format. The binary
transfer is accomplished via direct VME/VXI reads and writes, so new
information is transferred on each bus cycle. Second, each text character
transferred represents only 4 bits of data. Binary transfers are performed
using D32, so each transfer represents a full 32 bits of data. Finally, text
transfers must be processed in order to determine where the data will
ultimately be sent to or read from. Parsing and processing the command
can require a significant amount of microprocessor overhead. Binary
transfers do not require any parsing or processing.

Saving and Loading Tests

SR2500 User's Manual 3-181

Rev. 05Interface Technology

Chapter 3: Programming

SYSTem :LTIMeout(?)

:LEARn(?)

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-182

Binary Learn Time-Out (NON-SCPI)

SYSTem :LTIMeout(?)

The SYSTem:LTIMeout command sets the time-out value used in learning
system tests. If the transfer of all blocks to or from the SR2510 does not
occur in the allotted time, a command error will be generated.

This value is the total number of seconds to transfer all blocks of data
from the SR2510 to the slot 0 controller (LEARn?) or from the slot 0
controller to the SR2510 (LEARn). The default value is 20 seconds.

timeout_value = (1 to 100)

SYSTEM:LTIMEOUT 10
SYST:LTIM 1.5e+01

timeout_value

timeout_value = The learn time-out value specified in seconds and
represented using scientific notation.

SYSTEM:LTIMEOUT?
2.000000e+01

SYST:LTIM?
1.500000e+01

:LTIMout <timeout_value>

Parameter Definition

Examples

:LTIMout?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-183

Rev. 05Interface Technology

Chapter 3: Programming

Learning Binary Tests (NON-SCPI)

The SYSTem:LEARn command instructs the SR2510 to send the current
system setup parameters to the slot 0 controller as a binary memory-image
file. The SYSTem:LEARn command instructs the SR2510 to receive a
previously saved memory-image file from the slot 0 controller. The binary
memory-image is sent as multiple blocks of data, each varying in size
dependent upon the actual test(s) defined.

Instructs the SR2500 to learn a previously saved system setup. There are
no parameters associated with this command. The data content for this
command is sent to the SR2510 A32 memory by the slot 0 controller, one
block for each handshake cycle, to be read by the SR2510.

none

SYSTEM:LEARN
SYST:LEAR

Instructs the SR2500 to send the system setup to the slot 0 controller.
There are no parameters associated with this command, and none returned.
The data content for this command is sent to the SR2510 A32 memory by
the SR2510, one block for each handshake cycle, to be read by the slot 0
controller.

none

SYSTEM:LEARN?
SYST:LEAR?

SYSTem :LEARn(?)

:LEARn

Parameters

:LEARn?

Examples

Examples

Parameters

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-184

The SR2500 employs an advanced record triggering system which controls the type of data stored to
record memory, and under what conditions that data is stored. The record triggering logic also
controls when input data from the UUT is used in CRC calculations. The SCPI command path which
provides access to these control parameters is RECord:TRACe. Trace controls give the SR2500
triggering and recording capabilities very much like a typical Logic Analyzer. A higher level of
Trace functions is provided with the Trace Macro commands TMACro:POSTtrigger and
TMACro:SEQuence. These functions compile into Trace commands, which may be read using the
TRACe:SEQuence:CATalog? query command, and were discussed in section 3.1.

TRACE commands are divided into 3 main subsystems, the Qualifiers (QUAL), the Qualifier Combi-
nations (QCOM) and Sequences (SEQ). Refer to figure 3-1 for a graphic example of how these three
systems interact. Qualifiers, simply stated, are trigger match patterns which are compared against
data returned by the UUT. Qualifiers are separate from the real-time compare functions, which
compare the UUT response with the data stored in the Expect memory. There are 8 qualifier triggers
for each record type field defined in the SR2500. A single Qualifier may define trigger patterns for
any or all record type fields. When multiple trigger patterns (i.e., field patterns) are defined for a
single qualifier, the results of all trigger pattern compares are logically ANDed together. In other
words, assume Qualifier 1 was defined with a trigger pattern of #hAA, #hBB and #hCC for fields F1,
F2 and F3, respectively. It would require a pattern match of (F1 == #hAA && F2 == #hBB && F3
== #hCC), on the same test cycle, for Qualifier 1 to evaluate TRUE.

Qualifier Combinations are exactly what the name implies, groups of one or more of the 8 Qualifiers
Trigger Patterns. Whereas the results of multiple field trigger patterns in a Qualifier are logically
ANDed, the results of multiple Qualifiers in a QCOM are logically ORed. To expand on the example
above, assume QCOM 1 were defined to consist of Qualifier 1 and Qualifier 2, and that Qualifier 1
was defined with a trigger pattern of #hAA, #hBB and #hCC for fields F1, F2 and F3, respectively,
and that Qualifier 2 was defined with a trigger pattern of #hFF, #hEE and #hDD for fields F1, F2 and
F3, respectively. It would require a match of (F1 == #hAA && F2 == #hBB && F3 == #hCC) || (F1
== #hFF && F2 == #hEE && F3 == #hDD), for QCOM 1 to evaluate TRUE. Qualifiers and
QCOMs are also available for conditional looping and branching evaluation by CMACRO instruc-
tions.

The record control functions and CRC control functions are grouped into structures called "Se-
quences". There are a maximum of 16 sequences for use in controlling the record and CRC pro-
cesses. Each sequence specifies what to record, when to record it, when to advance to the next
sequence level, when to jump out of sequence to a new sequence level, and when the input data will
be used in CRC calculations. There is also a global "Stop Test" parameter which allows the record
control logic to set a STOP flag when the defined sequence level is reached. The state of this flag is
continually polled by the system processor, and when the state indicates a stop condition, the system
processor will asynchronously abort the test. Sequences support using the results of the real-time
compare and the SR2510 Input Flags for record and CRC control, in addition to the Qualifiers and
Qualifier Combinations

Advanced Record Triggering

SR2500 User's Manual 3-185

Rev. 05Interface Technology

Chapter 3: Programming

RECord :TRACe

:WRAP(?)

:QUALifier

:QCOMbination(?)

:SEQuence

:CLEar

:CLEar

:PATTern(?)

:FIELd

:FILTer

:ADVSequence :ON

:RECord

:COUNt

:ON:JUMP

:CRC [:CALCulate]

:STOP

[:DEFine]

:CLEAr

:CATalog?

:CRC

:PATTern?

:FIELd

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-186

Qualifier Trigger
Patterns

Q
C
O
M

Qualifier Numbers

QUAL# ADDR DATA R/W* 1 2 3 4 5 6 7 8

1 #h2000 #hXX #b01 1 *

2 #h2000 #hXX #b10 2 *

3 #h7FFF #hXX #bXX 3 *

4 4

5 5

6 6

7 7

8 8

*Read Cycle = #b10; Write Cycle = #b01

Trace Sequences

FILTer RECord ADVS:ON COUNt JUMP:ON CRC:CAL STOP

1 Data QCOM1 QCOM1 1 Never Never No

2 Data Always QCOM3 1 Never Never No

3 Data Never QCOM2 1 Never QCOM2 No

4 Data Never QCOM3 1 Never Always No

5 Data Never Never 1 Never Never No

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

o
o
o

16 Data Never Never 1 Never Never No

Figure 3-1: Trace Qualifiers, Qualifier Combinations and Sequences

This example demonstrates how the Record Trace functions might be used in a RAM test. Assuming the
SR2500 is programmed to write data to a block of memory from address 2000 hex to 7FFF, and then read the
same addresses back. Trace #1 is set to disable CRC sampling and wait until the trigger pattern defined by
Qualifier #1 (QCOM1) is detected on the input pins. When QCOM1 is detected, record one sample and
advance to Sequence #2. Recording will be continuous at this level, until QCOM3 evaluates true, indicating
the end of the write process. Sequence #3 halts all data recording and waits for QCOM2 to evaluate true. At
this time, a single CRC sample is performed, and the trace advances to Sequence #4. At Sequence level 4,
CRC sampling is continuous until QCOM3 is again detected, indicating the end of the read process. Detec-
tion of QCOM3 causes an advance to Sequence #5. Sequence #5 halts all data recording and CRC sampling,
thus ending the record process.

SR2500 User's Manual 3-187

Rev. 05Interface Technology

Chapter 3: Programming

Record Memory Wrapping (NON-SCPI)

RECord :TRACe :WRAP(?)

The RECord:TRACe:WRAP command turns ON or OFF the record wrap-
around feature. When WRAP is set to off, data recording stops when the
available record memory is full. In this case the maximum samples is
defined by the test_size. If WRAP is set to ON, then recording wraps
around to the beginning of record memory when the end of the record
memory is reached. Many thousands, or millions, of sample may have
been made, however, the record memory only holds the most recent.
When recording stops, the SR2500 automatically arranges the contents of
the record memory so that the oldest data recorded is located at vector 1,
and the most recent data located at the last record vector.

Instructs the SR2500 to turn ON or turn OFF record wrap-around.

ON = Record wrap-around is enabled.

OFF (default) = Record wrap-around is disabled.

RECORD:TRACE:WRAP ON
REC:TRAC:WRAP ON

Queries the state of the SR2500 record wrap-around.

0 | 1

1 = Record wrap-around is enabled.

0 = Record wrap-around is disabled.

RECORD:TRACE:WRAP?
1

REC:TRAC:WRAP?
0

:WRAP <ON | OFF>

Parameters

Examples

:WRAP?

Response

Parameters

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-188

Qualifier Trigger Patterns (NON-SCPI)

The RECord:TRACe:QUALifier:PATTern command defines a trigger
pattern for the specified field and assigns the field trigger pattern to the
specified qualifier. A qualifier may be assigned multiple field trigger
patterns. Each added trigger pattern is logically ANDed with the other
trigger patterns assigned to the same qualifier.

Defines the qualifier to assign the field trigger pattern to.

qual_num = (1 - 8)
ALL = Specifies all 8 qualifiers.

The optional FIELd parameter allows the trigger pattern to be loaded to
(or queried from) a destination field other than the default record type
field. If the FIELd parameter option is used, then the FIELd and
PATTern(?) parameters must be separated by a semicolon instead of
colons, as shown in the examples below. Valid field types for this com-
mand are Expect (EXP), Dontcare (DON), Expect/Dontcare (ED), Algo-
rithmic Expect (ALGE), Hardware Expect (HEXP) and Hardware
Dontcare (HDON). For proper operation, Expect and Dontcare field pairs
should be used, either as separate fields (EXP/ALGE/HEXP and DON/
HDON), or combined (ED).

name = Any alphanumeric string and ‘_’ (max 8 characters).

The data_value parameter is the actual trigger pattern, mask (Dontcare)
pattern, or trigger and mask pattern, that will be assigned to the qualifier.
If no radix prefix (#h or #b) is used with the data values, then the data
values must be entered in the radix format defined for the destination
field. The radix format for the destination field is defined by the
FIELd:NAME:RADix command. If the radix for the destination field is
set to HEX, then data can be specified in hexadecimal format (the '#h'
prefix is optional) or in binary format if the '#b' prefix is specified. Valid
hexadecimal data values are '0' through 'F'. For hexadecimal radix fields,
the 'X' character represents a don't care condition for that nibble (1 nibble
= 4 bits). If the radix for the field is set to BIN, then data can be specified
in binary format (the '#b' prefix is optional) or in hexadecimal format if
the '#h' prefix is specified. For binary radix fields, the 'X' character
represents a don't care condition for the corresponding bit position.
Leading '0' data characters may be omitted as shown in the examples
below.

RECord :TRACe :QUALifier :PATTern(?)

:FIELd ;PATTern(?)

:QUALifier <qual_num | ALL>

Parameters

:FIELd <name>

Parameter Definition

Note

The FIELd parameter changes
the destination field only for the
command in which it occurs, but
it does not change the default
field.

:PATTern <data_value>

SR2500 User's Manual 3-189

Rev. 05Interface Technology

Chapter 3: Programming

data_value = [#h]{(0-F) | X} | #b{0 | 1 | X}

RECORD:TRACE:QUALIFIER 1:FIELD ADDR;PATTERN #h2000

REC:TRAC:QUAL 1:FIEL DATA;PATT #hXX
REC:TRAC:QUAL 1:FIEL R_W;PATT #b01
REC:TRAC:QUAL 2:FIEL ADDR;PATT #h2000;FIEL DATA;PATT
#hXX;FIEL R_W;PATT #b10
REC:TRAC:QUAL 3:FIEL ADDR;PATT #h7FFF;FIEL DATA;PATT
#hXX;FIEL R_W;PATT #bXX

Queries the specified fields trigger pattern for the specified qualifier. The
radix of data_value is determined by the FIELd:NAME:RADix command.
If the radix for the field is set to HEX, then data will be returned in
hexadecimal format with the '#h' prefix. Valid hexadecimal data values
are '0' through 'F'. The hexadecimal 'X' character is valid only with
Expected/DontCare type fields (ED) and represents a don't care condition
for that nibble (1 nibble=4 bits). The hexidecimal '?' character will be
displayed when a nibble contains a combination of enabled and don't care
expect pins.

If the radix for the field is set to BIN, then data will be returned in binary
format with the '#b' prefix. Valid binary data values are '0', '1'. The binary
'X' character is valid only with Expected/DontCare type fields (ED) and
represents a don't care condition for the corresponding bit position.
Leading '0' data characters will be returned.

data_value

data_value = #h{(0-F) | X} | #b{0 | 1 | X}

RECORD:TRACE:QUALIFIER 1:FIELD DATA;PATTERN?
#hXX

REC:TRAC:QUAL ALL:FIEL ADDR;PATT?
#h2000,#h2000,#h7FFF,#hXXXX,#hXXXX,#hXXXX,#hXXXX,#hXXXX

REC:TRAC:QUAL ALL:FIEL R_W;PATT?
#b01,#b10,#bXX,#bXX,#bXX,#bXX,#bXX,#bXX

Parameter Definition

Examples

:PATTern?

Response

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-190

Clearing Qualifier Trigger Patterns (NON-SCPI)

RECord :TRACe :QUALifier :CLEar

The RECord:TRACe:QUALifier:CLEar command clears all of the field
trigger patterns assigned to the specified qualifier.

Defines the qualifier to clear.

qual_num = (1 - 8)

ALL = Specifies all 8 qualifiers.

Clears the specified qualifier of all field trigger patterns assigned to it.

none

RECORD:TRACE:QUALIFIER 1:CLEAR
REC:TRAC:QUAL ALL:CLE

:QUALifier <qual_num | ALL>

Parameters

:CLEar

Parameter Definition

Examples

SR2500 User's Manual 3-191

Rev. 05Interface Technology

Chapter 3: Programming

Qualifier Trigger Combinations (NON-SCPI)

The RECord:TRACe:QCOMbination command defines the logical OR
combination of Qualifiers patterns for record triggering and program
control.

Specifies the Qcombination number and the Qualifier(s) associated with
it. The qcom_num parameter is placed immediately after the
QCOMbination command without a space between the two. The trigger
patterns defined in each of the qualifiers are logically ANDed together,
while the qualifiers within the qcombination are logically ORed. To-
gether, they define a traditional Logic Analyzer boolean trigger equation.

A maximum of 8 QCOMbinations may be defined, each consisting of 1 to
8 qualifiers. Qualifiers may be specified in a list format (qualifiers
separated by a comma), or as a range of qualifiers (qualifier ranges
separated by a '-'). Or, lists and ranges may be mixed as shown in the
examples.

qcom_num = (1 - 8)

qual_num = (1 - 8)

RECORD:TRACE:QCOMBINATION1 1
REC:TRAC:QCOM2 1,2,3,7
REC:TRAC:QCOM3 2-5
REC:TRAC:QCOM4 1-3,5,7-8

Queries the Qualifier(s) defined for the specified Qcombination.

qcom_num = (1 - 8)

qual_num[{,qual_num}]

RECORD:TRACE:QCOMBINATION1?
1

REC:TRAC:QCOM2?
1,2,3,7

REC:TRAC:QCOM3?
2,3,4,5

REC:TRAC:QCOM4?
1,2,3,5,7,8

RECord :TRACe :QCOMbination(?)

:QCOMbination<qcom_num> <qual_num[-qual_num]> [{,<qual_num[-qual_num]>}]

:QCOMbination<qcom_num>?

Response

Examples

Parameters

Examples

Parameters

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-192

Clearing Qualifier Trigger Combinations (NON-SCPI)

RECord :TRACe :QCOMbination :CLEar

The RECord:TRACe:QCOMbination:CLEar command clears the speci-
fied Qualifier Combination of all of the field trigger patterns assigned to
it.

Defines the Qualifier Combination to clear. The qcom_num parameter is
placed immediately after the QCOMbination command without a space
between the two.

qcom_num = (1 - 8)

Clears the specified Qualifier Combination.

none

RECORD:TRACE:QCOMBINATION1:CLEAR
REC:TRAC:QCOM2:CLE

:QCOMbination<qcom_num>

Parameters

:CLEar

Parameter Definition

Examples

SR2500 User's Manual 3-193

Rev. 05Interface Technology

Chapter 3: Programming

Record Filter and Control (NON-SCPI)

RECord :TRACe :SEQuence [:DEFine]

:FILTer :RECord

The RECord:TRACe:SEQuence:DEFine:FILTer:RECord command
defines what information to save to record memory and when to save it.
For additional information about Trace Sequences, refer to the beginning
of the "Advanced Record Triggering" section, pg. 3-186.

Defines sequence level that the command parameters will apply to.

seq_num = (1 - 16)

ALL = Specifies all 16 sequence levels.

Provide the path into the sequence definition subsystem. DEFine is the
default path, so the DEFine command may be omitted.

none

Defines what information to save to the record memory, when the RECord
conditions are met.

DATA = Record the input data from the UUT.
ERRor = Record the results of the real-time compare.
0 = no error
1 = error

Specifies when the selected information is saved to the record memory.

NEVer = Never save information to the record memory.

ALWays = Always save the specified data to the record memory

COMpare = Save the specified data to the record memory whenever the
real-time compare is true. The real-time compare state is the dynamic
result of comparing the input data from the UUT to the current vectors
expected data pattern.

NCOMpare = Save the specified data to the record memory whenever the
real-time compare is false. The real-time compare state is the dynamic
result of comparing the input data from the UUT to the current vectors
expected data pattern.

:SEQuence <seq_num | ALL>

Parameters

[:DEFine]

Parameter Definition

:FILTer <DATA | ERRor>

Parameter Definition

:RECord <NEVer | ALWays | COMpare | NCOMpare | QCOM<qcom_num>>

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-194

QCOM = Save the specified data to the record memory whenever one or
more of the qualifier trigger patterns, as specified by the qualifier combi-
nation, evaluates true, i.e., matches the input data from the UUT.

qcom_num = (1 - 8)

RECORD:TRACE:SEQUENCE 1:DEFINE:FILTER DATA:RECORD QCOM1
REC:TRAC:SEQ 2:DEF:FILT DATA:REC ALW
REC:TRAC:SEQ 3:FILT DATA:REC NEV
REC:TRAC:SEQ 4:FILT DATA:REC NEV

Examples

SR2500 User's Manual 3-195

Rev. 05Interface Technology

Chapter 3: Programming

Advancing Trace Sequences (NON-SCPI)

RECord :TRACe :SEQuence [:DEFine]

:ADVSequence :COUNt[:ON]

The RECord:TRACe:SEQuence:DEFine:ADVSequence:ON:COUNt
command defines the conditions that must be met in order to advance to
the next sequence level. Or, another way to look at it, the command
defines how long you will stay at the current sequence level recording the
specified data. If both the Advance Sequence and Jump conditions are
specified at the same sequence level, and if both conditions are met
simultaneously, then the JUMP takes priority and the next trace sequence
level executed will be the one specified by the JUMP condition. For
additional information about Trace Sequences, refer to "Advanced Record
Triggering," pg. 3-186.

Defines sequence level that the command parameters will apply to.

seq_num = (1 - 16)

ALL = Specifies all 16 sequence levels.

Provide the path into the sequence definition subsystem. DEFine is the
default path, so the DEFine command may be omitted.

none

Provide the path into the advance sequence definition subsystem.

none

Specifies when the selected information is saved to the record memory.
The ON command is optional and may be omitted for convenience.

NEVer = Never advance to the next sequence level.

CLOCk = Advance to the next sequence level after the number of clock
cycles defined by advs_count.

COMpare = Advance to the next sequence level after the real-time
compare condition evaluates true for the number of cycles specified by the
advs_count parameter.

NCOMpare = Advance to the next sequence level after the real-time
compare condition evaluates false for the number of cycles specified by
the advs_count parameter.

:SEQuence <seq_num | ALL>

Parameters

[:DEFine]

:ADVSequence

[:ON] <NEVer | CLOCk | COMpare | NCOMpare | QCOM<qcom_num>>

Parameter Definition

Parameter Definition

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-196

QCOM = Advance to the next sequence level after the qualifier combina-
tion, as specified by qcom_num, evaluates true for the number of cycles
specified by the advs_count parameter.

qcom_num = (1 - 8)

Defines the number of times the ADVS:ON condition must evaluate true
before advancing to the next sequence level.

advs_count = (1 - 65535)

RECORD:TRACE:SEQUENCE 1:DEFINE:ADVSEQUENCE:ON
QCOM1:COUNT 1
REC:TRAC:SEQ 2:DEF:ADVS QCOM3:COUN 1
REC:TRAC:SEQ 3:ADVS QCOM2:COUN 1

:COUNt <advs_count>

Parameter Definition

Examples

SR2500 User's Manual 3-197

Rev. 05Interface Technology

Chapter 3: Programming

Jumping to Trace Sequences (NON-SCPI)

RECord :TRACe :SEQuence [:DEFine]

:JUMP :ON

The RECord:TRACe:SEQuence:DEFine:JUMP:ON command defines the
conditions that must be met in order to jump to the specified sequence
level. If both the Advance Sequence (ADVS) and Jump conditions are
specified for the same sequence level, and if both conditions are met
simultaneously, then the JUMP takes priority and the next trace sequence
level executed will be the one specified by the JUMP condition. For
additional information about Trace Sequences, refer to "Advanced Record
Triggering," pg. 3-186.

Defines sequence level that the command parameters will apply to.

seq_num = (1 - 16)

ALL = Specifies all 16 sequence levels.

Provide the path into the sequence definition subsystem. DEFine is the
default path, so the DEFine command may be omitted.

none

Specifies the sequence level to jump to when the jump condition is met.

seq_num = (1 - 16)

Specifies when the selected information is saved to the record memory.

NEVer = Never advance to the next sequence level.

COMpare = Advance to the next sequence level after the real-time
compare condition evaluates true for the number of cycles specified by the
advs_count parameter.

NCOMpare = Advance to the next sequence level after the real-time
compare condition evaluates false for the number of cycles specified by
the advs_count parameter.

QCOM = Advance to the next sequence level after the qualifier combina-
tion, as specified by qcom_num, evaluates true for the number of cycles
specified by the advs_count parameter.

:SEQuence <seq_num | ALL>

Parameters

[:DEFine]

Parameter Definition

:JUMP <seq_num>

Parameter Definition

Parameter Definition

:ON <NEVer | COMpare | NCOMpare | QCOM<qcom_num>>

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-198

qcom_num = (1 - 8)

RECORD:TRACE:SEQUENCE 1:DEFINE:JUMP 1:ON QCOM1
REC:TRAC:SEQ 2:DEF:JUMP 1:ON QCOM1
REC:TRAC:SEQ 3:JUMP 1:ON QCOM1

Examples

SR2500 User's Manual 3-199

Rev. 05Interface Technology

Chapter 3: Programming

CRC Calculation Control (NON-SCPI)

The RECord:TRACe:SEQuence:DEFine:CRC:CALCulate command
defines when the information being returned by the UUT will be used in
CRC calculations. For additional information about Trace Sequences,
refer to "Advanced Record Triggering" section, pg. 3-186.

Defines sequence level that the command parameters will apply to.

seq_num = (1 - 16)

ALL = Specifies all 16 sequence levels.

Provides the path into the sequence definition subsystem. DEFine is the
default path, so the DEFine command may be omitted.

none

Provide the path into the CRC calculation subsystem.

none

Specifies under what conditions the information being returned by the
UUT will be used in a CRC calculation. The CALCulate command is
optional and may be omitted for convenience.

NEVer = Never calculate the CRC.

ALWays = Always calculate the CRC.

COMpare = Calculate the CRC whenever the real-time compare is true.
The real-time compare state is the dynamic result of comparing the input
data from the UUT to the current vectors expected data pattern.

NCOMpare = Calculate the CRC whenever the real-time compare is
false. The real-time compare state is the dynamic result of comparing the
input data from the UUT to the current vectors expected data pattern.

QCOM = Calculate the CRC whenever one or more of the qualifier
trigger patterns, as specified by the qualifier combination, evaluates true,
i.e., matches the input data from the UUT.

qcom_num = (1 - 8)

RECord :TRACe :SEQuence [:DEFine]

:CRC [:CALCulate]

:SEQuence <seq_num | ALL>

Parameters

Parameter Definition

[:DEFine]

:CRC

Parameter Definition

[:CALCulate] <NEVer | ALWays | COMpare | NCOMpare | QCOM<qcom_num>>

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-200

Examples RECORD:TRACE:SEQUENCE 1:DEFINE:CRC:CALCULATE QCOM1
REC:TRAC:SEQ 2:DEF:CRC:CALL ALW
REC:TRAC:SEQ 3:CRC:CALC NEV
REC:TRAC:SEQ 4:CRC NEV

SR2500 User's Manual 3-201

Rev. 05Interface Technology

Chapter 3: Programming

Stopping Tests from Trace Sequences (NON-SCPI)

RECord :TRACe :SEQuence :STOP

The RECord:TRACe:QUALifier:STOP command instructs the SR2500 to
stop the currently running test when the trace sequence level specified is
reached. The stop process is controlled via software, so stopping a test is
not immediate. The amount of vector over-run is indeterminate and
depends on the speed of the test that is running. Once the STOP param-
eter is defined for a sequence level, the only way to clear the stop condi-
tion is to clear the sequence level and redefine it.

Defines sequence level that the command parameters will apply to.

seq_num = (1 - 16)

ALL = Specifies all 16 sequence levels.

Sets the stop condition for the sequence level specified.

none

RECORD:TRACE:SEQUENCE 1:STOP
REC:TRAC:SEQ 2:STOP

:SEQuence <seq_num | ALL>

Parameters

:STOP

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-202

Clearing Trace Sequences (NON-SCPI)

RECord :TRACe :SEQuence :CLEar

The RECord:TRACe:SEQuence:CLEar command clears all of the record
control parameters for the specified sequence level.

Defines sequence level that the command parameters will apply to.

seq_num = (1 - 16)

ALL = Specifies all 16 sequence levels.

Clears the specified sequence level of all record controls defined for it.

none

RECORD:TRACE:SEQUENCE 1:CLEAR
REC:TRAC:SEQ ALL:CLE

:SEQuence <seq_num | ALL>

Parameters

:CLEar

Parameter Definition

Examples

SR2500 User's Manual 3-203

Rev. 05Interface Technology

Chapter 3: Programming

Trace Sequences Catalog (NON-SCPI)

The RECord:TRACe:SEQuence:CATalog? query command return the
record control parameters for specified sequence level.

Defines sequence level that the command parameters will apply to.

seq_num = (1 - 16)

ALL = Specifies all 16 sequence levels.

Returns the record control parameters for the specified sequence level. If
ALL sequence levels were specified, the response for each level will be
separated by a semi-colon ';' character.

{seq_num FIL <DAT | ERR> <NEV | ALW | COM | NCOM |
QCOM<qcom_num>>,CRC <NEV | ALW | COM | NCOM |
QCOM<qcom_num>>,ADVS <NEV | CLOC | COM | NCOM |
QCOM<qcom_num>> advs_count,JUMP seq_num <NEV | COM |
NCOM | QCOM<qcom_num>>[;]}

seq_num = (1 - 16)

qcom_num = (1 - 8)

advs_count = (1 - 65535)

NEVer = Never record data, calculate CRC, advance to the next sequence
sequence level or jump to a new sequence level.

ALWays = Always record data or calculate CRC.

CLOCk = Advance to the next sequence level after the number of clock
cycles defined by advs_count.

COMpare = Record data, calculate CRC, advance to the next sequence
level or jump to new sequence level whenever the real-time compare is
true. The real-time compare state is the dynamic result of comparing the
input data from the UUT to the current vectors expected data pattern.

NCOMpare = Record data, calculate CRC, advance to the next sequence
level or jump to new sequence level whenever the real-time compare is
false. The real-time compare state is the dynamic result of comparing the
input data from the UUT to the current vectors expected data pattern.

RECord :TRACe :SEQuence :CATalog?

:SEQuence <seq_num | ALL>

Parameters

:CATalog?

Response

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-204

QCOM = Record data, calculate CRC, advance to the next sequence level
or jump to new sequence level whenever one or more of the qualifier
trigger patterns, as specified by the qualifier combination, evaluates true,
i.e., matches the input data from the UUT.

RECORD:TRACE:SEQUENCE 1:CATALOG?
1 FIL DAT QCOM1,CRC NEV,ADVS QCOM1 1,JUMP 1 NEV

REC:TRAC:SEQ 2:CAT?
2 FIL DAT ALW,CRC NEV,ADVS QCOM3 1,JUMP 1 NEV

REC:TRAC:SEQ ALL:CAT?
1 FIL DAT QCOM1,CRC NEV,ADVS QCOM1 1,JUMP 1 NEV;2 FIL DAT
ALW,CRC NEV,ADVS QCOM3 1,JUMP 1 NEV;3 FIL DAT NEV,CRC
QCOM2,ADVS QCOM2 1,JUMP 1 NEV;4 FIL DAT NEV,CRC ALW,ADVS
QCOM3 1,JUMP 1 NEV;5 FIL DAT NEV,CRC NEV,ADVS NEV 1,JUMP 1
NEV;6 FIL DAT NEV,CRC NEV,ADVS NEV 1,JUMP 1 NEV;7 FIL DAT
NEV,CRC NEV,ADVS NEV 1,JUMP 1 NEV;8 FIL DAT NEV,CRC NEV,ADVS
NEV 1,JUMP 1 NEV;9 FIL DAT NEV,CRC NEV,ADVS NEV 1,JUMP 1 NEV;10
FIL DAT NEV,CRC NEV,ADVS NEV 1,JUMP 1 NEV;11 FIL DAT NEV,CRC
NEV,ADVS NEV 1,JUMP 1 NEV;12 FIL DAT NEV,CRC NEV,ADVS NEV
1,JUMP 1 NEV;13 FIL DAT NEV,CRC NEV,ADVS NEV 1,JUMP 1 NEV;14 FIL
DAT NEV,CRC NEV,ADVS NEV 1,JUMP 1 NEV;15 FIL DAT NEV,CRC
NEV,ADVS NEV 1,JUMP 1 NEV;16 FIL DAT NEV,CRC NEV,ADVS NEV
1,JUMP 1 NEV

Examples

SR2500 User's Manual 3-205

Rev. 05Interface Technology

Chapter 3: Programming

Querying CRC Checksums (NON-SCPI)

RECord :TRACe :CRC :PATTern?

:FIELd ;PATTern?

The RECord:TRACe:CRC:PATTern? query command returns the CRC
checksum for all pins in the specified field.

Provides the path into the CRC pattern query subsystem.

none

The optional FIELd parameter allows the CRC checksums to be queried
from a destination field other than the default field. If the FIELd param-
eter option is used, then the FIELd and PATTern? parameters must be
separated by a semicolon, as shown in the examples. The only valid field
types for this command are Record (REC) and Hardware Record (HREC).

name = Any alphanumeric string and ‘_’ (max 8 characters).

Note
The FIELd parameter changes the destination field only for the com-
mand in which it occurs, but it does not change the default field.

Queries the CRC checksum for all pins in the specified field. The radix of
crc_checksum is always set to HEX, regardless of how the field's radix is
defined. Refer to the FIELd subsystem in section 3.1.3 for further infor-
mation about field pin mapping.

<crc_num> C<card#>P<pin#> <crc_checksum>[{,<crc_num>
C<card#>P<pin#> <crc_checksum>}]

crc_num = (1 - 32) - Ordinal position of the pin within the field.
card# = (1 - 18) - SR25XX module number.
pin# = (1 - 32) - SR25XX pin number.
crc_checksum = #h{(0-F)}[{,#h{(0-F)}}]

RECORD:TRACE:CRC:FIELD DATA;PATTERN?
8 C1P24 #HB980,7 C1P23 #H7A5E,6 C1P22 #HB980,5 C1P21 #H7A5E,4
C1P20 #HB980,3 C1P19 #H7A5E,2 C1P18 #HB980,1 C1P17 #H7A5E

RECORD:TRACE:CRC:FIELD ADDR;PATTERN?
16 C1P16 #HFD7A,15 C1P15 #H7188,14 C1P14 #H7746,13 C1P13 #H1E34,12
C1P12 #HC1D2,11 C1P11 #HE9A0,10 C1P10 #H291E,9 C1P9 #HFFCC,8
C1P8 #HB92A,7 C1P7 #H4CB8,6 C1P6 #H3DF6,5 C1P5 #H7C64,4 C1P4
#H4382,3 C1P3 #HFAD0,2 C1P2 #H15CE,1 C1P1 #HF3FC

:CRC

Parameters

:FIELd <name>

Parameter Definition

:PATTern?

Response

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

Chapter 3: Programming3-206

THIS PAGE INTENTIONALLY LEFT BLANK

SR2500 User's Manual 3-207

Rev. 05Interface Technology

Chapter 3: Programming

This section includes the miscellaneous commands that did not fit any-
where else. These commands provide the ability to run diagnostics tests
of the SR2500 system, and query the results of the test, query the status of
the SR2500 system, specify the conditions in which the SR2500 will
generate a Service Request Interrupt to the Slot-0 Controller, and define
the SR2500 Bus Master time-out period. Also included in this section are
the 488.2 mandatory commands. This section is divided into the follow-
ing subsections:

� SR2500 Diagnostics ... pg. 3-208
� Status Queries, Status Interrupts, and System Queries pg. 3-214
� System IDN Query ... pg. 3-225
� Bus Master Time-out ... pg. 3-227
� Variable Voltage I/O on the SR2500 pg. 3-229
� IEEE 488.2 Commands ... pg. 3-233

Miscellaneous Commands

SR2500 User's Manual

Rev. 05 Interface Technology

3-208 Chapter 3: Programming

The SR2500 provides the ability to execute an internal function test called
Diagnostics. The diagnostics command allows you to specify which sub-
system in the total SR2500 system to test, and what test to perform. After
the specified diagnostics test has completed, the diagnostics command
sub-system allows the results of the test to be queried, indicating the type
of failure detected by the diagnostics test, assuming one existed.

The table below is a listing of the tests performed by the SR2500 firmware
upon receiving the DIAG:EXEC command. The 2nd colomn indicates
which tests are run during the RAM section of the diagnostics and the 3rd
column indicates which tests are run during the WRAP section.

Diagnostics

Tests Performed

I/O Cards

TEST RAM Test WRAP Test

Stimulus Gate Array Test Yes No

Response Gate Array Test Yes No

Output Memory Test Yes No

Tristate Memory Test Yes No

Expect Memory Test Yes No

Response Memory Test Yes No

Algorithmic Memory Test Yes No

Test Definition Yes No

Field Definition No Yes

Fill Command No Yes

Record Qualifiers No Yes

Record Trace Sequences No Yes

Output Stimulus Vectors No Yes

Record of Input Vectors No Yes

Timing / Control Card

Command Macro Memory Test Yes No

Control Gate Array Test Yes No

SR2500 User's Manual 3-209

Rev. 05Interface Technology

Chapter 3: Programming

:CARDDIAGnostics

:TYPE

:EXECute

:STATus?

SR2500 User's Manual

Rev. 05 Interface Technology

3-210 Chapter 3: Programming

:TYPE <RAM | WRAP | ALL>

DIAGnostics :TYPE RAM ;CARD ;EXECute

:TYPE WRAP|ALL ;EXECute

Diagnostic Test Execution (NON-SCPI)

The DIAGnostics command executes the SR2500 diagnostic self tests.
All defined tests must be deleted prior to executing the diagnostic self
tests. There are 2 types of diagnostic tests, RAM Test and Wraparound
Test. The RAM Test is a non-intrusive test and does not generate patterns
to the I/O pins.

The RAM Test performs the following test on the SR2510 Timing/Control
Board:

o Control Gate Array Register Read/Write test
o Stimulus Command Memory test
o Stimulus Parameter Memory test
o EEPROM Checksum test

The RAM Test performs the following SR25XX I/O Module tests:

o Stimulus Gate Array Register Read/Write tests
o Response Gate Array Register Read/Write tests
o Output Memory test
o Tristate Memory test
o Expected Memory test
o Dontcare Memory test
o Record Memory test
o Stimulus Algorithmic Memory
o Response Algorithmic Memory test
o EEPROM Checksum test

The Wraparound Test executes a comprehensive diagnosis of the SR25XX
I/O drivers and receivers. The Wraparound Cables must be installed from
the output connectors to the input connectors. By specifying a Wrap-
around test, a special test is defined internally with a "walking 1" pattern
generated on the stimulus output pins and the same pattern expected/
compared against the response input pins. The SR2500 is placed in the
RUNNING mode and therefore all I/O Modules will be tested regardless
of the I/O card specified.

The TYPE parameter specifies the diagnostic test type that will be ex-
ecuted. The diagnostic test type can also be specified by the literal string
"ALL", where both the RAM test and the Wraparound test will be ex-
ecuted. If the TYPE parameter is omitted, then "ALL" tests will be
executed.

SR2500 User's Manual 3-211

Rev. 05Interface Technology

Chapter 3: Programming

Parameter Definition RAM = RAM Test will be executed.

WRAP = Wraparound Test will be executed.

ALL = Both the RAM Test and the Wraparound Test will be executed.

The optional CARD parameter specifies which SR2500 card number will
be tested, where "0" is the SR2510 Timing/Control Board and "1" through
"18" is the card number of the SR25XX I/O Modules. The card number
can also be specified by the literal string "ALL", where all SR2500 system
modules will be tested. If the CARD parameter string is not specified,
then all cards will be tested.

Note
If the WRAP test parameter is selected, then all SR2500 I/O mod-
ules will be tested, regardless of the CARD number specified.

card_num = (0 - 18)

ALL = All SR2500 modules will be tested.

The EXECute command executes the specified diagnostic test.

none

DIAGNOSTICS:TYPE RAM;CARD 2;EXECUTE
DIAG:TYPE WRAP;EXEC
DIAG:EXEC

;CARD <card_num | ALL>

Parameter Definition

;EXECute

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

3-212 Chapter 3: Programming

Diagnostic Test Status Query (NON-SCPI)

The DIAGnostics:STATus? query command returns the results of the last
diagnostic test executed.

:STATus?

Response

card_num,fail_type,fail_string,fail_patt[{;card_num,fail_type,fail_string,fail_patt}]

Parameter Definition:

card_num = (0 - 18), the card number where the test failure occurred.

fail_type= (R/W ERROR | UNINITIALIZED | WRAP-AROUND ER-
ROR), the failure type description string.

fail_string= (CONTROL GATE ARRAY | EEPROM | STIM GATE
ARRAY 0 | STIM GATE ARRAY 1 | STIM GATE ARRAY 2 | STIM
GATE ARRAY 3 | REC GATE ARRAY 0 | REC GATE ARRAY 1 | REC
GATE ARRAY 2 | REC GATE ARRAY 3 | NO TRIGGER WORD
FOUND | PATTERN), the failure location description string.

fail_patt = (#hXXXXXXXX[{,#hXXXXXXXX}]), where
#hXXXXXXXX represents the failing pattern. For R/W ERRORs and
WRAP-AROUND ERRORs, two patterns will be returned. The first
pattern returned is the expected data and the second pattern is the actual
data. For example, the response shown below returns a R/W ERROR
failure where the expected pattern was #h000055AA and the actual
pattern read was #h00000000.

Examples

DIAGNOSTICS:STATUS?

0,R/W ERROR,CONTROL GATE
ARRAY,#h0000055aa,#h00000000;1,R/W ERROR,STIM GATE ARRAY
2,#h000055aa,#h00000000

DIAG:STAT?

1,WRAP-AROUND ERROR,PATTERN,#h00000020,#h000000f0

DIAGnostics :STATus?

SR2500 User's Manual 3-213

Rev. 05Interface Technology

Chapter 3: Programming

THIS PAGE INTENTIONALLY LEFT BLANK

SR2500 User's Manual

Rev. 05 Interface Technology

3-214 Chapter 3: Programming

The SR2500 includes the Status Reporting mechanisms described in
chapter 11 of IEEE 488.2 and the SCPI-defined Operation Status Register
and Questionable Data/Signal Status Register. The SR2500 does not
define any functions or conditions for the Questionable Status Register,
however, the register reporting commands are included as part of the
"Minimum Status Reporting Structure" required by SCPI.

The Operation Status register allows querying the current operational
status of the SR2500, as well as defining operational events which will
cause an interrupt to the slot 0 controller to be generated. The operational
condition of the SR2500 is a dynamic status, meaning it will constantly be
updated with the current status. Operation events are latched. When the
enabled event occurs (Operation Status Enable Register), the condition
will be latched in the Operation Status Event Register and an interrupt
generated. The event will remain latched in the operation status event
register until the state of the register is queried. Querying the register
clears the event and resets the interrupt.

The System Queries defined in this section allow reading the following
system parameters; Command Errors, the SCPI syntax version supported
and system identification and configuration. The SYSTEM:IDN? com-
mand is similar to the IEEE 488.2 command "*IDN?" and returns system
configuration information.

The SR2500 has extensive command error checking built into the com-
mand parser. When a command error occurs, the ERROR LED on the
front panel of the SR2510 will be illuminated, and remain illuminated
until the SYSTEM:ERROR? query is executed. Sending this command
will extinguish the LED and return the command error that generated the
condition.

The SYSTEM:VERSION? number returns the SCPI version supported. It
is important to note that the SR2500 follows the SCPI syntax and rules,
but most of the commands are not SCPI commands. This is due to the
limited number of commands defined by the SCPI language to support
digital requirements. Where possible, the SR2500 has used the defined
SCPI commands, and each of these SCPI command is indicated by refer-
ring to the SCPI paragraph number in which it is defined.

Status Queries, Status Interrupts and System Queries

SR2500 User's Manual 3-215

Rev. 05Interface Technology

Chapter 3: Programming

STATus :OPERation [:EVENt]?

:CONDition?

:ENABLE(?)

:QUEStionable [:EVENt]?

:CONDition?

:ENABLE(?)

:PRESet

SYSTem :ERRor?

:VERSion?

:IDN?

SR2500 User's Manual

Rev. 05 Interface Technology

3-216 Chapter 3: Programming

STATus :OPERation [:EVENt]?

ENABle(?)

The Operation Status Registers conform to the IEEE 488.2 specification
and are comprised of the Event Register, the Enable Register, and the
Condition Register. The Operation Event Register reports the latched
operating status conditions for the SR2500. These conditions can be used
to generate an interrupt to the Slot 0 by setting the Operation Event
Summary Bit (OES Bit 7) in the IEEE 488.2 SRE Status Byte. The
Operation Event Summary Bit is set when an enabled Status Operation
Event Register bit is set true. The Operation Status Register supports the
'Waiting for Arm', 'Waiting for Trigger', and 'Program Running' status bits.

Operation Interrupt Definition (SCPI 20.1 & 20.3)

Figure 3-2.
Operation Status, Status Enable,

Status Event and Condition Registers.

&

Logical OR

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Operation Status
Enable Register

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Not Used
Not Used
Not Used
Not Used
Not Used
Waiting For Trigger
Waiting for Arm
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Program Running
Not Used

Operation Status
Event Register

To IEEE 488.2
Status Byte OES Bit (7)

&
&

&
&

&
&

&
&

&
&

&
&

&
&

&

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Operation Status
Condition Register

Not Used
Not Used
Not Used
Not Used
Not Used
Waiting For Trigger
Waiting for Arm
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Program Running
Not Used

SR2500 User's Manual 3-217

Rev. 05Interface Technology

Chapter 3: Programming

The bit definition for the Event Register is identical to the Condition
Register.

The EVENt? command returns the contents of the Operation Event
Register. The 16 bit event register is returned in decimal format. The
contents of the Event Register is latched and may not represent the current
state of the SR2500. EVENt is the default command within the
OPERation branch and may be omitted for brevity. Reading the Event
Register clears the contents of the register.

event_reg

event_reg = (0 - 65535)

STATUS:OPERATION:EVENT?
16480

STAT:OPER?
16480

The ENABle command sets the contents of the 16 bit Operation Enable
Register. The Enable Register is a mask register used to select which
event(s) or bit(s), if any, will be used to set the event status bits in the
Status Register. The contents of the Enable Register can be specified in
decimal format; or in hexadecimal or binary format by using the '#h' and
'#b' prefixes, respectively

enab_reg = ((0 -65535) | (#h0 - #hFFFF) | (#b0 - #b1111111111111111))

STATUS:OPERATION:ENABLE 0
STAT:OPER:ENAB 0

The ENABle? command returns the contents of the enable mask for the
Operation Event Register. The 16 bit enable register is returned in deci-
mal format.

enab_reg

enab_reg = (0 - 65535)

STATUS:OPERATION:ENABLE?
64

STAT:OPER:ENAB?
64

:[EVENt?]

Response

Response

Examples

:ENABle <enab_reg>

Parameter Definition

Examples

:ENABle?

Response

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

3-218 Chapter 3: Programming

STATus :OPERation :CONDition?

Operation Condition Query (SCPI 20.2)

The Operation Condition Register contains the current operating status
condition for the SR2500. The Operation Condition Register supports
the 'Waiting for Arm', 'Waiting for Trigger', and 'Program Running' status
bits. The bit definition for the Operation Condition Register is identical
to the Operation Event Register.

The CONDition? command returns the contents of the Operation
Condition Register. The 16 bit condition register is returned in decimal
format. Reading the Condition Register does not clear the contents of
the register.

cond_reg

cond_reg = (0 - 65535)

STATUS:OPERATION:CONDITION?
32

STAT:OPER:COND?
32

:CONDition?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-219

Rev. 05Interface Technology

Chapter 3: Programming

STATus :QUEStionable [:EVENt]?

ENABle(?)

:CONDition?

Questionable Status Registers (SCPI 20.1 - 20.3)

&

Logical OR

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Questionable Status
Enable Register

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used

Questionable Status
Event Register

To IEEE 488.2
Status Byte QES Bit (3)

&
&

&
&

&
&

&
&

&
&

&
&

&
&

&

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Questionable Status
Condition Register

Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used

The Questionable Status Registers are not used by the SR2500; however,
since they are required by SCPI, they have been included. The Question-
able Status Registers do conform to the IEEE 488.2 specification and are
comprised of the Event Register, the Enable Register, and the Condition
Register. The Questionable Register commands are parsed by the
SR2500, but no bits are used.

Figure 3-3.
Questionable Status, Status Enable,

Status Event and Condition Registers.

SR2500 User's Manual

Rev. 05 Interface Technology

3-220 Chapter 3: Programming

The EVENt? command returns the contents of the Questionable Event
Register. The 16 bit event register is returned in decimal format. The
contents of the Event Register is always set to '0'. EVENt is the default
command within the QUEStionable branch and may be omitted for
brevity. Reading the Event Register clears the contents of the register.

event_reg

event_reg = 0

STATUS:QUESTIONABLE:EVENT?
0

STAT:QUES?
0

The ENABle command sets the contents of the 16 bit Questionable Enable
Register. The contents of the Enable Register can be specified in decimal
format; or in hexadecimal or binary format by using the '#h' and '#b'
prefixes, respectively

enab_reg = ((0 - 64) | (#h0 - #hFFFF) | (#b0 - #b1111111111111111))

STATUS:QUESTIONABLE:ENABLE 0
STAT:QUES:ENAB 0

The ENABle? command returns the contents of the enable mask for the
Questionable Event Register. The 16 bit enable register is returned in
decimal format.

enab_reg

enab_reg = (0 - 64)

STATUS:QUESTIONABLE:ENABLE?
0

STAT:QUES:ENAB?
0

The CONDition? command returns the contents of the Questionable
Condition Register. The 16 bit condition register is returned in decimal
format. Reading the Condition Register does not clear the contents of the
register.

cond_reg

cond_reg = 0

:[EVENt?]

Response

Parameter Definition

Examples

:ENABle <enab_reg>

Parameter Definition

Examples

:ENABle?

Response

Parameter Definition

Examples

:CONDition?

Response

Parameter Definition

SR2500 User's Manual 3-221

Rev. 05Interface Technology

Chapter 3: Programming

STATUS:QUESTIONABLE:CONDITION?
0

STAT:QUES:COND?
0

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

3-222 Chapter 3: Programming

STATus :PRESet

Status Preset (SCPI 20.7)

The STATus:PRESet command sets the Operation Enable Register and the
Questionable Enable Register to a preset value of '0'. The Status Preset
command configures the SCPI and device-dependent status data structures
so that device-dependent events are reported at a higher level through the
mandatory part of the status-reporting mechanism.

The PRESet command sets the Operation Enable Register and the Ques-
tionable Enable Register to a preset value of '0'.

none

STATUS:PRESET

:PRESet

Parameter Definition

Examples

SR2500 User's Manual 3-223

Rev. 05Interface Technology

Chapter 3: Programming

System Error Query (SCPI 21.7)

SYSTem :ERRor?

The SYSTem:ERRor query command returns the error status of the
latched command error. When a command error is generated, the error
status is latched into the error register and the error status LED indicator
on the front panel of the SR2510 will illuminate. The error status is
returned as an error code number followed by a descriptive string. Refer
to Appendix F for a list of error codes. Error codes are divided into
sections. Section -100 represents command errors. Section -200 repre-
sents execution errors. Device-dependent errors are represented by -300
error codes and query errors use -400 numbers. Querying the error status
clears the contents of the error register and will turn off the error status
LED indicator on the SR2510.

err_code,err_string

err_code = -(101 - 499)

err_string = See Appendix F for a listing of error codes and error strings.

SYSTEM:ERROR?
0,"No Error"

SYST:ERR?
-103,"Invalid Separator;Semi-colon or colon expected"

:ERRor?

Response

Parameter Definition

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

3-224 Chapter 3: Programming

SCPI Version Query (SCPI 21.18)

SYSTem :VERSion?

The SYSTem:VERsion? query command returns the Standard Commands
for Programmable Instruments (SCPI) revision number supported by the
SR2500.

year.version

year = YYYY, where YYYY represent the calendar year of the supported
version.

version = V, where V is the version number of the supported version.

SYSTEM:VERSION?
1993.0

SYST:VERS?
1993.0

:VERSion?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-225

Rev. 05Interface Technology

Chapter 3: Programming

System IDN Query (NON-SCPI)

SYSTem :IDN?

The SYSTem:IDN? query command returns the SR2500 system configu-
ration. The system configuration incudes information about the SR2500
including: software revision number, RAM options, logical addresses and
I/O options installed for the SR2510 module and the SR2520 modules.
Information on the RG2500 Rail Generator (if present) is also included.

sw_rev;VXI-SR2520-25MHz(num_io,vec_depth)-cc_log_addr-
SNcc_ser_num;IOCARD1,H-io_type;[IOCARD2,H-
io_type;{IOCARD3,H-io_type,L-io_type;][VXI-SR2520[GP}-
25MHz(num_io,vec_depth)exp_log_addr;[IODCARxH-io_type,L-
io_type[IOCARDx,H-io_type;[IODARDx,H-io_type,L-
io;]]][PROBECARD-n][;VXI-RG2500-rg_num-rg_log_addr]

sw-rev = XX.XX where XX.XX represents the software revision number
of the SR2510.

num_io = (0 - 3), the number of I/O cards installed in this module. The
SR2510 must have at least 1 I/O card.

vec_depth = (64K | 256K), the vector depth of the module, all modules in
a single system must be of the same depth.

cc_log_addr = (1 - 255), the SR2510's VXI logical address.

cc_ser_num = (YYYYYYYYYY-YYY), where YYYYYYYYYY-YYY
represents the SR2510's serial number.

IOCARDx = (1 - 18), where x is the number of the I/O card. I/O cards
are numbered in sequence, starting with IOCARD1, which must be
installed in the SR2510. Except for the first I/O card, which must be
installed in the 1st space in the SR2510, spaces may be skipped in the
system when installing I/O cards.

H-io type = (ECL | TTL1 | TTL2 | TTL3 | TTL4 | CMOS3V | CMOS5V |
VVT1 | NONE), this indicates that the high 16-bits (bits 32-17) for this I/
O card are of this logic family.

L-io_type = (ECL | TTL1 | TTL2 | TTL3 | TTL4 | CMOS3V | CMOS5V |
VVT1 | NONE), this indicates that the low 16-bits (bits 16-1) for this I/O
card are of this logic family.

:IDN?

Response

Parameter Definition

SR2500 User's Manual

Rev. 05 Interface Technology

3-226 Chapter 3: Programming

ECL is Differential ECL output.

TTL1 is Fast TTL with no Input term. and no Output Term.

TTL2 is Fast TTL with no Input Term. and 100 Ohm Output Term.

TTL3 is Fast TTL with 220 Ohm Input Term. and no Output Term.

TTL4 is Fast FFT with 220 Ohm Input Term. and 100 Ohm Output Term.

CMOS3V is 3.3 volt CMOS output.

CMOS5V is 5.0 volt CMOS output.

VVT1 is variable voltage output.

NONE is no adapter installed.

exp_log_addr = (2 - 255), the SR2520's VXI logical address.

GP = indicates that the Guided Probe option is installed on the SR2520
module, only 1 Guided Probe option is allowed in an SR2500 system.

PROBE CARD-n = (2 - 19), where n indicates the number of the Guided
Probe Card, this will always be the last I/O card in the system. This
parameter will only occur in SR2500 systems with the Guided Probe
option installed.

rg_num = (1 - 9), the number of the RG2500 Rail Generator.

rg_log_addr = (2 - 255), the RG2500's VXI logical address.

For the SR2500 system with 1 control module (with 2 I/O cards) and 2
expansion modules (1 with 3 I/O cards, 1 with 3 I/O cards and Guided
Probe):

SYSTEM:IDN?
1.07;VXI-SR2510-25MHz(2,256K)-7-SN0123456789-9876;IOCARD1,H-TTL1,L-
TTL1;IOCARD2,H-CMOS5V,L-CMOS5V;VXI-SR2520-25MHz(3,356K)-
8;IOCARD3,H-ECL,L-ECL;IOCARD4,H-TTL2,L-TTL2;IOCARD5,H-VVT;VXI-
SR2520GP-25MHz(3,256K)-9;IOCARD6,H-ECL,L-TTL3;IOCARD7,H-
CMOS3V,L-CMOS3V;IOCARD9,H-TTL4,L-NONE;PROBE CARD-9

For an SR2500 system with 1 control module (with 3 I/O cards) and 1 expansion
module (with 2 I/O cards):

SYSTEM:IDN?
1.07;VXI-SR2510-25MHz(2,256K)-7-SN0123456789-9876;IOCARD1,H-TTL1,L-
TTL1;IOCARD2,H-CMOS5V,L-CMOS5V;IOCARD3,H-TTL1,L-ECL;VXI-
SR2520-25MHz(2,256K)-8;IOCARD4,H-ECL,L-ECL;IOCARDS5,H-TTL2,L-
TTL2;

Examples

SR2500 User's Manual 3-227

Rev. 05Interface Technology

Chapter 3: Programming

Each time the SR2500 parses a command in which the data portion of the
command is intended for an I/O module, the SR2510 requests control of
the bus in order to transfer the data to the appropriate I/O module. This
process is known as becoming the Bus Master.

While acting as the Bus Master, the SR2510 must be able to detect when
an I/O module is responding to the read and write cycles initiated by the
SR2510. This is done via a handshaking process which is built into the
VXI bus structure. If for any reason the handshaking process breaks
down, the current bus master must be able abort the current data transfer
cycle and return the bus to a quiescent state.

The SR2500 achieves this by having a watchdog timer for all Bus Master
operations. If the Bus Master initiated data transfer cycle does not com-
plete in the time period defined for this timer, the bus cycle will be
aborted and an error generated. This prevents a handshake failure from
hanging up the VXI bus.

Bus Master Time-Out

SR2500 User's Manual

Rev. 05 Interface Technology

3-228 Chapter 3: Programming

Bus Master Time-Out (NON-SCPI)

SYSTem :BMASter :TIMeout(?)

The SYSTem:BMASter:TIMeout command will set (or query) the
SR2500 Bus Master time-out value.

Defines the number of seconds to wait for a Bus Master data transfer cycle
to complete, before aborting the bus cycle and generating an error. Values
may be specified as a floating point number or in scientific notation.
Option S, MS, or US may be used for engineering unit multipliers. The
default value is 5.000000e-02.

bus_master_timeout = (1.000000e-3 - 1.000000e+01)

SYSTEM:BMASTER:TIMEOUT 2
SYST:BMAS:TIM 200MS

Returns the Bus Master time-out value. The Bus Master time-out value is
returned in seconds and is represented in scientific notation.

bus_master_timeout

bus_master_timeout = (1.000000e-3 - 1.000000e+01)

SYSTEM:BMASTER:TIMEOUT?
5.000000e-02

SYST:BMAS:TIM?
1.500000e+00

:TIMeout <bus_master_timeout>

Parameter Definition

Examples

:TIMeout?

Response

Parameter Definition

Examples

SR2500 User's Manual 3-229

Rev. 05Interface Technology

Chapter 3: Programming

Variable Voltage I/O on the SR2500

The variable voltage I/O cards require externally supplied voltages in 2
sets of 4 voltage each. Each set of 4 voltages consists of a high rail
voltage and a low rail voltage used for output, and a high threshold
voltage and a low threshold voltage used for input. The high rail voltage
will be output on the stimulus pins as a "1". The low rail voltage will be
output on the stimulus pins as a "0". The high threshold voltage is used on
the input pins to determine when an input should be recorded as a "1"; any
input higher than the high threshold voltage is a "1". The low threshold
voltage is used on the input pins to determine when an input should be
recorded as a "0"; any input lower than the low threshold voltage is a "0".
If an input is between the high and low thresholds, it is considered an
indeterminate value. Each group of 4 pins (1-4, 5-8, 9-12, 13-16, 17-20,
etc.) can select either the A set of 4 voltages or the B set of 4 voltages.
Pin groups are assigned the A or B sets by fields; if a field contains more
than 1 pin group, then all groups in the field are assigned a voltage set
with a single command. If two fields overlap pin groups, the last com-
mand issued by the user to select voltage sets will override any previous
command. If any pin within a pin group is assigned a voltage set, all pins
within the pin group will be assigned the same voltage set. Each field may
be queried as to the last voltage set that was selected for that field. When
a field is defined, it will default to voltage set A.

SR2500 User's Manual

Rev. 05 Interface Technology

3-230 Chapter 3: Programming

Commands for Variable Voltage I/O Cards

RECord :CONDitioner :Sample THREshold(?)

STIMulus CONDitioner OFORmat VOLT?

SR2500 User's Manual 3-231

Rev. 05Interface Technology

Chapter 3: Programming

Selecting Response Threshold Voltage Sets (NON-SCPI)

RECord :CONDitioner

:FIELd

:THREshold(?):SAMPle

;THREshold(?)

The RECord:CONDitioner:SAMPle:THREshold command will select the
voltage thresholds for all pin groups contained in a field. Because each
pin group can have only one voltage set, this command will also have the
effect of selecting the high and low rail voltages for the pin groups. If any
fields, stimulus or response, overlap, care must be taken to ensure that the
pin groups end up with the proper voltage set enabled; the last command
to the SR2500 will override any previous commands that selected a
voltage set for a pin group.

The RECord:CONDitioner:SAMPle:THREshold? command will return
the voltage set selected for the specified field.

The optional FIELd parameter specifies the field where the algorithmic
macro commands will be loaded to (or queried from). The destination
field must be an Algorithmic Output (ALGO) field type. If the FIELd
parameter is used, then the FIELd and THREshold parameters must be
separated by a semicolon. If the FIELd parameter is omitted, then the
default stimulus field is assumed.

A | B

REC:COND:SAMPLE:THRES A
RECORD:COND:SAMP:THRE B

A | B

REC:COND:SAMPLE:THRE?

:FIELd <name>

Examples

:THREshold

:THREshold?

Examples

SR2500 User's Manual

Rev. 05 Interface Technology

3-232 Chapter 3: Programming

Selecting Stimulus Output Voltage Sets (NON-SCPI)

STIMulus :CONDitioner

:FIELd

:VOLT(?):OFORmat

;VOLT(?)

The STIMulus:CONDitioner:OFORmat:VOLT command will select the
voltage output for all pin groups contained in a field. Because each pin
group can have only one voltage set, this command will also have the
effect of selecting the high and low rail voltages for the pin groups. If any
stimulus or response fields overlap, care must be taken to ensure that the
pin groups end up with the proper voltage set enabled; the last command
issued to the SR2500 will override any previous commands that selected a
voltage set for a pin group.

The RECord:CONDitioner:OFORmat:VOLT? command will return the
voltage set selected for the specified field.

The optional FIELd parameter specifies the field where the algorithmic
macro commands will be loaded to (or queried from). The destination
field must be an Algorithmic Output (ALGO) field type. If the FIELd
parameter is used, then the FIELd and VOLT parameters must be sepa-
rated by a semicolon. If the FIELd parameter is omitted, then the default
stimulus field is assumed.

A | B

STIM:COND:OFOR:VOLTA

A | B

STIM:COND:OFORM:VOLT?

:VOLT

:VOLT?

Examples

Examples

:FIELd <name>

SR2500 User's Manual 3-233

Rev. 05Interface Technology

Chapter 3: Programming

The SR2500 supports the mandatory commands set forth in the IEEE
488.2 specification. The bulk of the mandatory commands utilize a four
register set for passing operational information to the system. These
registers are the Standard Event Status Register (ESR), Standard Event
Status Enable Register (ESE), Status Byte Register (STB) and the Service
Request Enable Register (SRE). Together, these register allow certain
conditions to generate interrupts to the system Slot 0 Controller, in much
the same way that GPIB supports the Service Request (SRQ) function.
Many of the commands on the following pages make use of these four
registers, so an understanding of the working relationship of these regis-

IEEE 488.2 Commands

Figure 3-4.
IEEE 488.2 Status and Service Request Registers.

P
ow

er
-O

n
-

N
ot

S
up

po
rt

ed

U
se

r
R

eq
ue

st
-

N
ot

S
up

po
rt

ed

C
om

m
an

d
E

rr
or

E
xe

cu
tio

n
E

rr
or

D
ev

ic
e

D
ep

en
da

nt
E

rr
or

Q
ue

ry
E

rr
or

R
eq

ue
st

C
on

tr
ol

-
N

ot
S

up
po

rt
ed

O
pe

ra
tio

n
C

om
pl

et
e

-
N

ot
S

up
po

rt
ed

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

&

&
&

&
&

&
&

&

Lo
gi

ca
l

O
R

7 6 5 4 3 2 1 0

&
&

&
&

&
&

&

Lo
gi

ca
l

O
R

Standard Event
Status Register

*ESR?

Standard Event
Status Enable Register

*ESE <NRf>
*ESE?

Service
Request

Generation

Status Byte
Register
*STB?

Service Request
Enable Register

*SRE <NRf>
*SRE?

RQS

MSS
2 1 0

Queue Not Empty

Output Queue

OES MAVQESESB

SR2500 User's Manual

Rev. 05 Interface Technology

3-234 Chapter 3: Programming

ters is required. For this reason, a functional diagram of the 488.2 regis-
ters is shown below (figure 3-4), and a diagram of the SCPI Operation and
Questionable register connections to the 488.2 status register is shown on
the opposite page (figure 3-5). It is also recommended that the user refer
to the IEEE 488.2 and the SCPI Syntax and Style manuals for further
information.

Some of the 488.2 commands also have parameters associated with them.
In all cases the parameters may be entered in either decimal (default
format), hexadecimal (#h prefix) or binary (#b prefix) formats.

Figure 3-5.
IEEE 488.2 Status and Service Request Registers

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Not Used
Not Used
Not Used
Not Used
Not Used

Waiting For Trigger
Waiting for Arm

Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used

Program Running
Not Used

Operation Status

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Questionable Status

Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used
Not Used

Output Queue

0
1
2
3
4
5
6
7

Operation Complete
Request Control*

Query Error
Device Dependent Error

Execution Error
Command Error

User Request*
Power On*

Standard Event Status 0
1
2
3
4
5
6
7

Not Used
Not Used
Not Used

RQS

Standard Event Status

* Not Supported

SR2500 User's Manual 3-235

Rev. 05Interface Technology

Chapter 3: Programming

*CLS

*ESE(?)

*ESR?

*TST?

*WAI

*TRG

*RST

*SRE(?)

STB?

*OPC(?)

*IDN?

SR2500 User's Manual

Rev. 05 Interface Technology

3-236 Chapter 3: Programming

IEEE 488.2 Mandatory Commands (IEEE 488.2)

*CLS

The *CLS Clear Status command clears the Operation Status Event
Register (OES), the Questionable Status Event Register (QES), the
Standard Event Status Register (ESR), and the Status Byte Register
(STB). All queues, except the output queue, in the status byte are emp-
tied. The SR2500 is placed into the operation complete - command idle
state (OCIS) and operation complete - query idle state (OQIS).

none

*CLS

*ESE(?)

*CLS

Parameter Definition

Example

The *ESE command sets the contents of the Standard Event Status Enable
Register. The 8 bit Enable Register is a mask register used to select which
event(s) or bit(s), if any, will be used to set the event status bits in the
Standard Event Status Register. Refer to Figure 3-4 for a bit description
of the ESE Register. The contents of the Enable Register can be specified
in decimal format; or in hexadecimal or binary format by using the '#h'
and '#b' prefixes, respectively. The *ESE? query command returns the
contents of the Standard Event Status Enable Register.

enab_reg = ((0 - 255) | (#h0 - #hFF) | (#b0 - #b11111111))

*ESE 255

*ESE #b00000001

enab_reg

enab_reg = (0 - 255)

*ESE?
255

*ESE <enab_reg>

Parameter Definition

Examples

*ESE?

Response

Parameter Definition

Example

SR2500 User's Manual 3-237

Rev. 05Interface Technology

Chapter 3: Programming

*ESR?

The *ESR query command returns the latched contents of the Standard
Event Status Register. The contents of the ESR Register is returned in
decimal format. Reading this register clears the latched contents of the
ESR Register. Refer to Figure 3-4 for a bit description of the ESR Regis-
ter.

esr_reg

esr_reg = (0 - 255)

*ESR?
32

*SRE(?)

*ESR?

Response

Parameter Definition

Example

The *SRE command sets the contents of the Service Request Enable
Register. The 8 bit Enable Register is a mask register used to select
which event(s) will cause a generation of a Service Request (SRQ) to
the Slot 0 Controller. If an enabled event occurs and interrupt will
be sent to the Slot 0. Refer to Figure 3-4 for a bit description of the
SRE Register. The contents of the Enable Register can be specified
in decimal format; or in hexadecimal or binary format by using the
'#h' and '#b' prefixes, respectively. The *SRE? query command
returns the contents of the Service Request Enable Register.

sre_reg = ((0 - 255) | (#h0 - #hFF) | (#b0 - #b11111111))

*SRE 16

sre_reg

sre_reg = (0 - 255)

*SRE?
16

*SRE<sre_reg>

Parameter Definition

Example

*SRE?

Response

Parameter Definition

Example

SR2500 User's Manual

Rev. 05 Interface Technology

3-238 Chapter 3: Programming

The *STB? query command returns the contents of the Status Byte
Register in decimal format. Refer to Figure 3-4 for a bit description
of the STB Register.

stb_reg

stb_reg = (0 - 255)

*STB?
64

*STB?

*OPC(?)

*STB?

Parameter Definition

Example

The *OPC Operation Complete command is only used for setting the
OPC bit in the Standard Event Status Register when any running test
is completed. The *OPC? Operation Complete query command
returns an ASCII '1' when the current test is completed. This is not a
query of the *OPC command mentioned above. The *OPC? com-
mand provides a means of polling the Operation Complete status of
the ESR Register without using SRQ.

none

*OPC

opc_stat

opc_stat = (0 | 1)

*OPC?
16

*OPC

Parameter Definition

Example

*OPC?

Response

Parameter Definition

Example

SR2500 User's Manual 3-239

Rev. 05Interface Technology

Chapter 3: Programming

The *IDN? query command returns the identification information for the
SR2500.

INTERFACE TECHNOLOGY,SR 2510VXI-25MHz(num_io,vec_depth)-
cc_log_addr;[VXI-SR2520[GP]-25MHz(num_io,vec_depth)-
exp_log_addr;][VXI-RG2500-rg_log_addr;]sw_rev

sw_rev = XX.X, where XX.X represent the software revision number of
the SR2510.

vec_depth_addr = (64K | 256K), the vector depth of the module, all
modules in a single system must be of the same depth.

cc_log_addr = (1 - 255), the SR2510's VXI logical address.

cc_ser_num = (YYYYYYYYYY-YYYY), where YYYYYYYYYY-
YYYY represent the SR2510's serial number.

exp_log_addr = (2 - 255), the SR2520's VXI logical address.

rg_log_addr = (2 - 255), the RG2500's logical address

*IDN?
INTERFACE TECHNOLOGY; VXI-SR2510-25MHz(3,256K)-7;VXI-SR2520-
25MHz(3,256K-8;VXI-SR2520GP-25MHz(2,256K)-9;1.07

*IDN?

*IDN?

Response

Parameter Definition

Example

*RST
The *RST command resets the SR2500. Any running test will be stopped
and the SR2500 will be placed into the operation complete - command
idle state (OCIS) and operation complete - query idle state (OQIS). All
defined tests will be deleted and all SYSTem parameters to their power-on
default condition.

none

*RST

*RST

Parameter Definition

Example

SR2500 User's Manual

Rev. 05 Interface Technology

3-240 Chapter 3: Programming

The *TRG Software Trigger command will start a test execution. The test
must be in the ARMED state and TRIG:SOURce parameter must be set to
BUS.

none

*TRG

Parameter Definition

Example

The *TST? query command

diag_code

diag_code =

*TST?

Response

Parameter Definition

Example

The *WAI Wait-to-Continue command is not used by the SR2500. The
*WAI is parsed by the SR2500 but no action is taken.

none

*WAI

Parameter Definition

Example

*TST?

*TRG

*WAI

*TST?

*TRG

*WAI

SR2500 User's Manual 4-1

Rev. 05Interface Technology

Chapter 4: Programming Examples

������������������

Programming Examples
Program Steps This chapter deals with the task of programming tests into the system and

running them. There are six basic steps to programming a test into the
SR2500, which are listed below.

1. Define Test and Global System Parameters
2. Define Stimulus and Expected Response Fields
3. Define Command Macro (CMACRO) Program
4. Load Stimulus and Expected Response Patterns/Algorithms
5. Define Record and CRC Control Parameters
6. Execute the Test

To assist in the definition of tests within the SR2500 system, four work
sheets are provided on the following pages (Tables 4-1 to 4-4). Table 4-1
assists in completing steps 1 and 2 above by providing entries for the
following parameters:

Define Global System Parameters

• Test Name
• Test Size
• Test Frequency or Period
• System Trigger Source, Slope and Level
• Clock Source, Slope and Level
• 10 MHz Reference Source
• Gate Source, Polarity and Level
• Test Program Loops
• Arm Data Control and Count

Define Stimulus and Expected Response Fields

• Field Name
• Field Type
• Field Pin maps
• Field Radix
• Output Format and Timing
• Sample Format and Timing

Table 4-2 and 4-3 address steps 3 and 4 above, allowing definition of
CMACRO test programs and stimulus and response patterns. Since vector
sequence control affects both stimulus and response memories, the sub-
systems are combined into two work sheets with common vector numbers.
The parameters defined in tables 4-2 and 4-3 are:

SR2500 User's Manual

Rev. 05 Interface Technology

4-2 Chapter 4: Programming Examples

Table 4-1: Test and Field Definition Worksheet

Test and Field Definition Worksheet
Test Definition Parameters

Name: Size: Program Loops: 10 MHz Ref:

Clock Source: Frequency: Clock Slope: Clock Level:

System Trigger: Trigger Slope: Trigger Level: Arm Data:

Gate Source: Gate Polarity: Gate Level: Arm Count:

Field Definition Parameters
Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Comments:

SR2500 User's Manual 4-3

Rev. 05Interface Technology

Chapter 4: Programming Examples

Define Command Macro (CMACRO) Program

• Labels
• Commands
• Conditions

Load Stimulus and Expected Response Patterns

• Load RAM-Backed Patterns
• Load Algorithmic Instructions

The last work sheet, Table 4-4, assists in the definition of the SR2500
record and CRC controls. The control of the record and CRC sample
logic is combined under the TRACE subsystem. Included in the work
sheet are the parameters for defining qualifier trigger patterns and trigger
combinations. The following items are those defined in Table 4-4:

Define Record and CRC Control Parameters

• Qualifier Trigger Patterns
• Qualifier Trigger Combinations
• Record Filter
• Record Condition
• CRC Sample Condition
• Advance Sequence Condition and Count
• Jump Sequence Condition

These work sheets will be used in the programming examples covered
later in this chapter. The examples will start simple and progressively
build in function, and complexity, ultimately covering the majority of
features and commands of the SR2500 system. Each example will start
with an objective, followed by filling in the blanks of a work sheet, and
ending with the SCPI commands used to program the SR2500. The
examples used are as follows:

4.2 Basic RAM-Backed Pattern Generation
4.3 Using CMACROS for Looping and Branching
4.4 Generating Algorithmic Stimulus Patterns
4.5 Using Real-Time Compare and Algorithmic Expected Responses
4.6 Recording UUT Responses

Examples 3 through 5 will demonstrate testing RAM on a microprocessor
based circuit board. A simplified schematic and a wiring diagram are
provided to assist in understanding the principles involved in testing the
device. Examples 1 and 2 are conceptual examples only and are not based
on any specific hardware.

SR2500 User's Manual

Rev. 05 Interface Technology

4-4 Chapter 4: Programming Examples

Test Program and Pattern Definition Worksheet
CMACRO Program Stimulus/Expected Response Fields

Vectors Label Command Condition

Comments:

Table 4-2: Test Program and Pattern Definition Worksheet

SR2500 User's Manual 4-5

Rev. 05Interface Technology

Chapter 4: Programming Examples

Table 4-3: Test Pattern Definition Worksheet

Test Pattern Definition Worksheet (continued)
Stimulus/Expected Response Fields

Comments:

SR2500 User's Manual

Rev. 05 Interface Technology

4-6 Chapter 4: Programming Examples

Table 4-4: Record Control Definition Worksheet

SR2500 User's Manual 4-7

Rev. 05Interface Technology

Chapter 4: Programming Examples

ONE TWO

1 N/C 00 01

2 N/C 01 02

3 N/C 02 04

4 N/C 03 08

5 N/C 04 10

6 N/C 05 20

7 N/C 06 40

8 N/C 07 80

Test Program and Pattern Definition Worksheet
CMACRO Program Stimulus/Expected Response Fields

Vectors Label Command Condition

RAM-Backed Pattern Generation

Test and Field Definition Worksheet
Test Definition Parameters

Name: Size: Program Loops: 10 MHz Ref:

Clock Source: Frequency: Clock Slope: Clock Level:

System Trigger: Trigger Slope: Trigger Level: Arm Data:

Gate Source: Gate Polarity: Gate Level: Arm Count:

Field Definition Parameters
Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

TEST_1 8 1 N/C

N/C 25 MHz N/A N/A

Bus N/A N/A Off

N/C N/C N/C 1

ONE OT HEX C1P8-1

N/A N/C N/A N/A

TWO OT HEX C1P16-9

N/A N/C N/A N/A

Table 4-5: Basic Stimulus Test Definition

Table 4-6: Basic Stimulus Test Patterns

The SR2500 provides a very simple process for generating patterns. In this example only generic test defini-
tions, field definitions and pattern RAM downloading are performed. Default values will be used for all other
parameters, including CMACRO program, data formatting and format timing. In this example the real-time
compare and data record features will not be used.

SR2500 User's Manual

Rev. 05 Interface Technology

4-8 Chapter 4: Programming Examples

When a SR2500 test is defined, certain test parameters are set to their Default States. The stimulus and
expected response memories are set to all 0's. The tristate and don'tcare memories are set to tristate all
outputs and mask all inputs. The CMACRO program is set to all OUTPUT statements, which instruct the test
sequence state machine to cycle through all test vectors in sequential order. In order to generate a simple
stimulus pattern, you need only define a few global test parameters, load the output and tristate memories
with the appropriate values, and execute the test. Refer to tables 4-5 and 4-6 for the test setup parameters. In
this example only two fields are defined. Both fields are 8 bit wide OT type fields (combination of Output
and Tristate fields). The test will sequence one time through 8 test vectors at a 25 MHz rate (1 vector every
40ns), and will generate an incrementing pattern on field ONE and a walking 1 pattern on field TWO. Param-
eters with a N/C indicate "No Change" (default) values. N/A indicates "Not Applicable".

The commented program listing generated from the tables in Figure 1 is listed below. To generate the test
program defined by this example, the SCPI commands shown below, minus the comments, are sent to the
SR2510. Various methods may be employed for performing this task. All VXI host computers provide
function calls for sending ASCII strings to VXI modules. This is one method for loading the test program.
Another would be to include the commands in an ASCII text file, and using a function call to send the con-
tents of the file to the specified VXI module. In each case, the end result is the same.

/***** Test Program Listing for TEST_1 *****/

/* Define Test Parameters */

TEST:DEF TEST_1:SIZE 8
SYST:PROG 1
SYST:FREQ 25.00MHz
TRIG:SYST:SOUR BUS

/* Define Fields */

FIELD:DEF ONE:TYPE OT:PIN C1P8-1
FIELD:NAME ONE:RADIX HEX
FIELD:DEF TWO:TYPE OT:PIN C1P16-9
FIELD:NAME TWO:RADIX HEX

/* Load Test Patterns */

STIM:FIEL ONE;VEC 1;COUN 8;DATA:PATT 0,1,2,3,4,5,6,7
STIM:FIEL TWO;VEC 1;COUN 8;DATA:PATT 1,2,4,8,10,20,40,80

/* Define Run-Time Parameters */

ARM:COUN 1
STIM:ARMD:MODE OFF

/* Initiate test and trigger */

INIT
*TRG

SR2500 User's Manual 4-9

Rev. 05Interface Technology

Chapter 4: Programming Examples

Test and Field Definition Worksheet
Test Definition Parameters

Name: Size: Program Loops: 10 MHz Ref:

Clock Source: Frequency: Clock Slope: Clock Level:

System Trigger: Trigger Slope: Trigger Level: Arm Data:

Gate Source: Gate Polarity: Gate Level: Arm Count:

Field Definition Parameters
Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

TEST_2 20 1 N/C

N/C 25 MHz N/A N/A

EXT POS 2.2V OFF

N/C N/C N/C 1

DATA OT HEX C1P16-1

0000 N/C N/A N/A

CLOCK OT HEX C1P17

0 RZ 10ns 20ns

Table 4-7: Data Transfer Test and Field Definitions

Figure 4-1.
Data Transfer Example Timing

A shortcut method to load the data patterns is to use the FILL functions. The examples below show an
alternate method of filling field ONE with an incrementing pattern, and field TWO with a walking 1 pattern.
While not much of a time saving with only 8 vectors in each field, the saving become significant when
thousands of vectors are used.

/* Alternate Method of Loading Memory */

STIM:VEC 1;COUN 8;DATA:FIEL ONE;FILL:TYPE INC;PATT 0;EXEC
STIM:VEC 1;COUN 8;DATA:FIEL TWO;FILL:TYPE WLK1;PATT 1;EXEC

� � �� �� ���� � �

��	
�

��

��	
�

���	
� ����	
�

����	
�

SR2500 User's Manual

Rev. 05 Interface Technology

4-10 Chapter 4: Programming Examples

DATA CLOCK

1 StartProgram F324 1

2 StartLoop until Trigger=TRUE 9553 1

3 0424 1

4 0424 1

5 BA1E 1

6 DA1E 1

7 14A1 1

8 7000 1

9 8591 1

10 0515 1

11 0129 1

12 6891 1

13 0615 1

14 8891 1

15 0122 1

16 1691 1

17 WordLoop until COUNt==32 0000 0

18 EndLoop F324 1

19 EndProgram 0000 0

20 N/C N/C N/C

Table 4-8: Data Transfer Program and Patterns

Test Program and Pattern Definition Worksheet
CMACRO Program Stimulus/Expected Response Fields

Vectors Label Command Condition

Using CMACROS and Data Formatting

SR2500 command macro (CMACRO) programs add another level of flexibility to an SR2500 based test, the
ability to loop on patterns and change test program flow. Looping and branching may be done uncondition-
ally or conditionally. The SR2500 also supports 5 data formats which may be applied to any of the stimulus
pins.

The next example uses a CMACRO program to produce a burst of high speed signals followed by a long dead
time. The burst is meant to simulate an asynchronous transfer of data across a communications bus. A single
clock pulse is generated for each 16 bit data word transferred and a frame of data consists of 16 data words.
The clock uses a Return-to-Zero (RZ) format and is placed in the middle of when the data word is valid.
After a frame is transferred the bus goes inactive for 2 frame times. Refer to the timing diagram in figure 4-1
for further details.

SR2500 User's Manual 4-11

Rev. 05Interface Technology

Chapter 4: Programming Examples

A typical method to achieve Mixed High Speed and Low Speed Timing
would be to run the test at the highest speed in order to provide the high
speed burst, and then pad multiple memory locations with the same data
pattern in order to create the static dead time. The disadvantage of this
approach is that memory is wasted and programming is complicated. The
approach used in this example is to define a unique data pattern for each
of the 16 data vectors, and then loop on a single vector for 32 cycles, thus
creating the 2 frame dead time using only a single test vector. The test
will start upon detection of an external trigger, loop sending the same 16
data words indefinitely, until another external trigger pulse is detected.

Like the previous example, tables 4-7 and 4-8 define the test parameters to
generate the required test patterns and the program listing is as follows.

/***** Test Program Listing for TEST_2 *****/

/* Define Test Parameters */

TEST:DEF TEST_2:SIZE 20
SYST:PROG 1
SYST:FREQ 25MHz
TRIG:SYST:SOUR EXT
TRIG:SYST:SLOP POS
TRIG:SYST:LEV +2.20

/* Define Fields */

FIELD:DEF DATA:TYPE OT:PIN C1P16-1
STIM:ARMD:FIELD DATA;PATT #h0
FIELD:DEF CLOCK:TYPE OT:PIN C1P17
STIM:ARMD:FIELD CLOCK;PATT #h0
STIM:COND:OFOR:FIELD CLOCK;MODE RZ,10.000000NS,20.000000NS

/* Define CMACRO Program */

STIM:VEC 1;CMAC:DEF (SP(OUT))
STIM:VEC 2;CMAC:DEF (SL(OUT(STRI == TRUE)))
STIM:VEC 3;CMAC:DEF (OUT(OUT))
STIM:VEC 4;CMAC:DEF (OUT(OUT))
STIM:VEC 5;CMAC:DEF (OUT(OUT))
STIM:VEC 6;CMAC:DEF (OUT(OUT))
STIM:VEC 7;CMAC:DEF (OUT(OUT))
STIM:VEC 8;CMAC:DEF (OUT(OUT))
STIM:VEC 9;CMAC:DEF (OUT(OUT))
STIM:VEC 10;CMAC:DEF (OUT(OUT))
STIM:VEC 11;CMAC:DEF (OUT(OUT))
STIM:VEC 12;CMAC:DEF (OUT(OUT))
STIM:VEC 13;CMAC:DEF (OUT(OUT))
STIM:VEC 14;CMAC:DEF (OUT(OUT))
STIM:VEC 15;CMAC:DEF (OUT(OUT))

SR2500 User's Manual

Rev. 05 Interface Technology

4-12 Chapter 4: Programming Examples

STIM:VEC 16;CMAC:DEF (OUT(OUT))
STIM:VEC 17;CMAC:DEF (WL(OUT(COUN == 32)))
STIM:VEC 18;CMAC:DEF (EL(OUT))
STIM:VEC 19;CMAC:DEF (OUT(OUT))

/* Load Test Patterns */

STIM:FIEL DATA;VEC 1;COUN 19;DATA:PATT F324,9553,424,424,BA1E,DA1E,14A1,
7000,8591,515,129,6891,615,8891,122,1691,0,F32,0
STIM:FIEL CLOCK;VEC 1;COUN 19;DATA:PATT 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 0,1,0

/* Define Run-Time Parameters */

STIM:ARMD:MODE ON
ARM:COUN 1

/* Initiate test */

INIT

/* Wait for External Trigger to start Test */

/* Wait for External Trigger to complete test*/

Figure 4-3.
8051 Write Cycle Timing.

Figure 4-2.
8051 Read Cycle Timing.

���

����

��

� !"��

� !"��

�" �"

�"
�"

�"

�"

�"

���#�� ���#��

���#�	

	"
"

���

����

�

� !"��

� !"��

�" �"

�"

�"

�"

���#�� ���#��

���#�	

SR2500 User's Manual 4-13

Rev. 05Interface Technology

Chapter 4: Programming Examples

Table 4-9: 8051 Timing Parameters

Generating Algorithmic Stimulus Patterns

In each of the previous examples, the stimulus patterns were pre-loaded into RAM for output to the UUT.
One of the more unique features of the SR2500, and the more useful, is the ability to generate pattern
algorithmically. This function is especially useful in bus emulation and RAM test applications, where the
data on address and data busses can be represented algorithmically. The following three examples will
illustrate this and other advanced features of the SR2500 by testing the RAM on a microprocessor based
circuit board. A brief discussion of the UUT will help understand the application of the SR2500 to the test.

The UUT is a circuit board based on the Intel 8051 microcontroller. Refer to the read and write timing
diagrams, the SR2500 to UUT interconnect schematic and the timing table (figures 4-2, 4-3 and 4-4, and table
4-9, respectively) for the following discussion. The 8051 utilizes a 16 bit address bus and an 8 bit data bus.
The lower 8 address lines are multiplexed with the data bus. When the address is valid on the bus, the
Address Latch Enable (ALE) signal will latch the lower address into an address latch. Then the bus is free to
either read or write data to the peripheral device, in this case, RAM.

In order to emulate the 8051 cycle timing, you must determine the minimum and maximum cycle times for
the read and write cycles. Adding the timing parameters t1 + t3 + t5 + t7 for the read cycle yields 671ns min
(1.490 MHz) and 851ns max (1.175 MHz). Adding the timing parameters t1 + t3 + t5 + t7 for the write cycle
yields the same values. So to emulate 8051 timing, the SR2500 test rate may be programmed anywhere
within the two ranges. In this case, the SR2500 will be programmed with a test rate of 1.481 MHz (675.0ns).

The next step is to determine the field requirements. There are two busses to emulate, plus a handful of
control signals. However, keep in mind that the lower 8 address signals are sent on the same bus as the 8 data
signals. Since the intent of this test is to use algorithmic pattern generation, three busses are defined in the
SR2500, and two of them Multiplexed together using the Return-to-Inhibit (Tristate) data formatting (see
figure 4-4). In this way, the upper address, lower address and data patterns may be generated using algo-
rithms.

Symbol Parameter Min Max Unit

t1 Address Valid to ALE Low 45 ns

t2 Address Hold After ALE Low 48 ns

t3 ALE Low to RD/WR Low 225 300 ns

t4 ALE Low to Valid Data In 517 ns

t5 RD/WR Pulse Width 400 ns

t6 Data Float After RD 97 ns

t7 RD/WR High to ALE High 43 123 ns

t8 Data Valid to WR Transition 23 ns

t9 Data Hold After WR 33 ns

SR2500 User's Manual

Rev. 05 Interface Technology

4-14 Chapter 4: Programming Examples

Figure 4-4.
8051 Emulation Wiring Schematic.

NOT AVAILABLE AT TIME OF PUBLICATION

SR2500 User's Manual 4-15

Rev. 05Interface Technology

Chapter 4: Programming Examples

Test and Field Definition Worksheet
Test Definition Parameters

Name: Size: Program Loops: 10 MHz Ref:

Clock Source: Frequency: Clock Slope: Clock Level:

System Trigger: Trigger Slope: Trigger Level: Arm Data:

Gate Source: Gate Polarity: Gate Level: Arm Count:

Field Definition Parameters
Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Another technique used is to tie the address busses (upper and lower), the RD signal and the WR signal to
input pins, in addition to the data bus which is bidirectional by definition, allowing recording of all signifi-
cant information for debugging failures. This is discussed further in following examples. This example deals
with the task of writing data to RAM algorithmically. Refer to table 4-10, 4-11A and 4-11B for SR2500 test
definition parameters and pattern definition. For clarity, tables 4-11A and 4-11B are shown on opposite pages
so that vector parameters are aligned.

Table 4-10: RAM_TEST Test and Field Definitions

RAM_TEST 1024 1 N/C

N/C 1.5 MHz N/A N/A

Bus N/A N/A ON

N/C N/A N/A 1

A15_08O ALGO HEX C1P16-9

FF N/C N/A N/A

A15_08T OT HEX C1P16-9

FF N/C N/A N/A

A07_00O ALGO HEX C1P8-1

FF RI 0.0ns 80.0ns

A07_00T OT HEX C1P8-1

FF N/C N/A N/A

D07_00O ALGO HEX C2P24-17

FF RI 200.0ns 465.0ns

D07_00T OT HEX C2P24-17

FF N/C N/A N/A

ALE OT BIN C3P25

0 RZ 0.0ns 30.0ns

WRO OT BIN C3P28

1 RONE 230.0ns 400.0ns

RDO OT BIN C3P27

1 RONE 230.0ns 400.0ns

PSENO OT BIN C2P26

1 N/C N/A N/A

SR2500 User's Manual

Rev. 05 Interface Technology

4-16 Chapter 4: Programming Examples

Table 4-11A: RAM_TEST Program and Pattern Definition

A15_08O A15_08T A07_00O A07_00T

1 StartProgram NONA 1F NONA FF

2 StartLoop until COUNt==96 INC INC

3 WordLoop until COUNt==254 HOLDA INC

4 EndLoop HOLDA INC

5 EndProgram NONA FF NONA FF

Test Program and Pattern Definition Worksheet
CMACRO Program Stimulus/Expected Response Fields

Vectors Label Command Condition

When a test of a particular size is defined, stimulus, expected response and record vectors are reserved. Note
in this example that the test size is 1024 vectors, yet only 5 vectors are actually used. Later expansions of this
test will add data recording to the existing stimulus pattern generation. Defining a test size of 1024 vectors
allows recording of up to 1024 samples, even though only 10 or 20 vectors are used in the stimulus and
expected response portion of the program. It is important to consider the total test resource requirements
when programming the SR2500.

Figure 4-5 depicts the cycle timing programmed into test RAM_TEST. The timing diagram actually shows a
single write cycle. The read cycle is identical except that the SR2500 never drives the AD07:00 bus during
the data valid time (tristates field D07_00O). Note also that this is the timing for a single vector. All vectors
will share the same timing for the duration of the test. Actual data patterns that will be output to the UUT,
when valid as defined by the data format parameters (and depicted graphically in figure 4-5), are defined in
table 4-11A and 4-11B.

Two fields were defined for the address busses and the data bus. This is because all three busses will be
generating algorithmic data. An algorithmic output type field (ALGO) does not provide for tristate control.
A second field of type OT (combined Output and Tristate memories) was created and mapped to the same
pins in order to provide tristate control for these busses. As the default condition of all tristate memories is to
disable their respective outputs, not defining a field that provides control of the tristate memory would result
in all three busses floating in a high impedance state for the duration of the test.

Figure 4-5.
RAM_TEST Write Cycle Timing.

���

$$$$$
����

$$$
�

���#�	 ���#�	

����#�� ���#�� ���#��

�� ��

���

��

��

��
���

���!������%&"��'()%�*���+&,

+&+& +&

+&

+&
+&

+&

SR2500 User's Manual 4-17

Rev. 05Interface Technology

Chapter 4: Programming Examples

The CMACRO test program and accompanying data patterns will write a 24K block of data to the RAM. The
base address of the RAM is 0x2000. In the test program, the address busses (ALU registers) are initialized to
0x1FFF at vector 1 (0x1F for A15_08O and 0xFF for A07_00O). However, since the ALE strobe is inactive
for this vector, the address is not latched into the address latch. The data bus is initialized to 0x55
(D07_00O), but the write strobe is inactive, so data is not written. Vectors 2-4 perform the 24K write pro-
cess. Vector 2 defines a CMACRO start loop for 96 iterations. The address busses are incremented by one,
providing the base RAM address of 0x2000, ALE is strobed high, the data bus ALU register (which was
initialized to 0x55) was exclusive ORed with 0xFF, resulting in a pattern of 0xAA, and the write strobe was
pulsed causing the 0xAA to be written to address 0x2000.

The CMACRO instruction at vector 3 defines a single vector loop for 254 test cycles. For each of the 254
iterations of vector 3, the lower address bus is incremented once, and the data bus is complemented (exclusive
ORed with 0xFF). The net result of vector 3 is an additional 254 write cycles to successive addresses with
complementing data.

Vector 4 terminates the loop that was defined at vector 2. One last increment of the lower address bus and
one last complement of the data bus are performed. The test then loops back to vector 2, where both address
busses are incremented (now at address 0x2100), the data is complemented and the process is repeated. One
single pass of vectors 2-4 provide 256 writes of complementing data to successive address locations. Looping
through this range of vectors 96 times results in the 24K write cycles (96 x 256 = 24576).

If the address busses were wider, changing only the loop count values at vectors 2 and 3 would accommodate
testing larger memories, up to a full 32 bit address bus using the same 3 vectors. Similar techniques could
also be employed to test devices with addressing beyond 32 bits. Following is a complete listing to generate
test RAM_TEST.

/***** TEST PROGRAM LISTING FOR RAM_TEST *****/

/* DEFINE TEST PARAMETERS */

TEST:DEF RAM_TEST:SIZE 1024
SYST:PROG 1
SYST:FREQ 1.48MHz
TRIG:SYST:SOUR BUS

D07_00O D07_00T ALE WRO RDO PSEN

NONA 55 0 1 1 1

XOR FF 1 0 1 1

XOR FF 1 0 1 1

XOR FF 1 0 1 1

NONA FF 0 1 1 1

Table 4-11B: RAM_TEST Pattern Definition (continued)

Test Pattern Definition Worksheet (continued)
Stimulus/Expected Response Fields

SR2500 User's Manual

Rev. 05 Interface Technology

4-18 Chapter 4: Programming Examples

/* DEFINE FIELDS */

FIELD:DEF A15_08O:TYPE ALGO:PIN C1P16-9
FIEL:NAME A15_08O:RAD HEX
FIELD:DEF A15_08T:TYPE OT:PIN C1P16-9
FIEL:NAME A15_08T:RAD HEX
FIELD:DEF A07_00O:TYPE ALGO:PIN C1P8-1
FIEL:NAME A07_00O:RAD HEX
FIELD:DEF A07_00T:TYPE OT:PIN C1P8-1
FIEL:NAME A07_00T:RAD HEX
FIELD:DEF D07_00O:TYPE ALGO:PIN C2P24-17
FIEL:NAME D07_00O:RAD HEX
FIELD:DEF D07_00T:TYPE OT:PIN C2P24-17
FIEL:NAME D07_00T:RAD HEX
FIELD:DEF ALE:TYPE OT:PIN C3P25
FIEL:NAME ALE:RAD BIN
FIELD:DEF WRO:TYPE OT:PIN C3P28
FIEL:NAME WRO:RAD BIN
FIELD:DEF RDO:TYPE OT:PIN C3P27
FIEL:NAME RDO:RAD BIN
FIELD:DEF PSEN:TYPE OT:PIN C2P26
FIEL:NAME PSEN:RAD BIN

/* DEFINE STIMULUS DATA FORMATS */

STIM:COND:OFOR:FIELD A07_00O;MODE RI,0.000000NS,80.000000NS
STIM:COND:OFOR:FIELD D07_00O;MODE RI,200.500000NS,465.000000NS
STIM:COND:OFOR:FIELD ALE;MODE RZ,0.000000NS,30.000000NS
STIM:COND:OFOR:FIELD WRO;MODE RONE,230.000000NS,400.000000NS
STIM:COND:OFOR:FIELD RDO;MODE RONE,230.000000NS,400.000000NS

/* DEFINE CMACRO PROGRAM */

STIM:VEC 1;CMAC:DEF (SP(OUT))
STIM:VEC 2;CMAC:DEF (SL(OUT(COUN == 96)))
STIM:VEC 3;CMAC:DEF (WL(OUT(COUN == 254)))
STIM:VEC 4;CMAC:DEF (EL(OUT))
STIM:VEC 5;CMAC:DEF (EP(OUT))

/* LOAD TEST PATTERNS AND ALGORITHMS */

STIM:FIEL A15_08O;VEC 1;COUN 5;AMAC:PATT NONA,INC,HOLDALL,HOLDALL,NONA
STIM:FIEL A15_08T;VEC 1;COUN 5;DATA:PATT 1F,C0,20,20,FF
STIM:FIEL A07_00O;VEC 1;COUN 5;AMAC:PATT NONA,INC,INC,INC,NONA
STIM:FIEL A07_00T;VEC 1;COUN 5;DATA:PATT FF,0,0,0,FF
STIM:FIEL D07_00O;VEC 1;COUN 5;AMAC:PATT NONA,XOR,XOR,XOR,NONA
STIM:FIEL D07_00T;VEC 1;COUN 5;DATA:PATT 55,FF,FF,FF,FF
STIM:FIEL ALE;VEC 1;COUN 5;DATA:PATT 0,1,1,1,0
STIM:FIEL WRO;VEC 1;COUN 5;DATA:PATT 1,0,0,0,1
STIM:FIEL RDO;VEC 1;COUN 5;DATA:PATT 1,1,1,1,1
STIM:FIEL PSENO;VEC 1;COUN 5;DATA:PATT 1,1,1,1,1

SR2500 User's Manual 4-19

Rev. 05Interface Technology

Chapter 4: Programming Examples

/* DEFINE RUN-TIME PARAMETERS */

STIM:ARMD:MODE ON
STIM:ARMD:FIELD A15_08T;PATT #hFF
STIM:ARMD:FIELD A07_00T;PATT #hFF
STIM:ARMD:FIELD D07_00T;PATT #hFF
STIM:ARMD:FIELD ALE;PATT #h0
STIM:ARMD:FIELD WRO;PATT #h1
STIM:ARMD:FIELD RDO;PATT #h1
STIM:ARMD:FIELD PSEN;PATT #h1
ARM:COUN 1

/* INITIATE TEST AND TRIGGER */

INIT
*TRG

Using Real-Time Compare and Algorithmic Expected Responses

The previous example demonstrated several important concepts. First was how to multiplex two or more data
sources onto a common set of pins using the Return-to-Inhibit data format. The example used was to multi-
plex address and data information onto a common bus, but the same technique could be used to multiplex row
address and column address onto a common bus for testing dynamic RAM.

The second important concept introduced in the previous programming example was how using CMACRO
looping in combination with algorithmic pattern generation yielded a test that, while only requiring 5 test
vectors total, tested 24K of RAM, and that the test could easily have been used to test 4GigaBytes of RAM
(232) and beyond.

Finally, the last example demonstrated the process for determining stimulus timing parameters and how to
program this information into the SR2500. Also included were the use of several stimulus data formats,
Return-to-Zero, Return-to-One and Return-to-Inhibit (RZ, RONE and RI, respectively).

This program example builds upon the last by adding the Real-Time Compare functions into the test. Real-
time compare utilizes the Expected Response memories (Expect, Don'tcare and Algorithmic Expect) to
perform a hardware comparison between an expected UUT response and the actual UUT response. Response
memory vector sequence is controlled via the CMACRO program exactly as is the Stimulus memory, so each
vector may have its own unique expected response. Expected responses may also be generated
algorithmically, like stimulus patterns. The expected algorithm may be the same as the stimulus algorithm, or
different.

Using the real-time compare function of the SR2500 adds two new concepts, in addition to the real-time
compare itself. First is Sample Timing, and second is use of the Compare Error Flag. Anytime an input
function is used (record data, real-time compare, or CRC calculation), it is imperative that the input sample
time is defined. Each SR2510 module allows the definition of 2 sample times within the test cycle, and all
input functions are tied to one or the other of those sample times. In the case of the Window Compare mode,
both sample times are used. When both sample clocks are used on a SR2510, Sample Time Ordering be-
comes important. You must define the later sample time first, followed by the earlier sample time. For the
purpose of this program example, the sample times are referred to as Sample Edges.

SR2500 User's Manual

Rev. 05 Interface Technology

4-20 Chapter 4: Programming Examples

Field Definition Parameters
Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

A15_08E ALGE HEX C1P16-9

N/A Sample Edge 30.0ns N/A

A15_08M ED HEX C1P16-9

N/A N/C N/A N/A

A07_00E ALGE HEX C1P8-1

N/A Sample Edge 30.0ns N/A

A07_00M ED HEX C1P8-1

N/A N/C N/A N/A

D07_00E ALGE HEX C2P24-17

N/A Sample Edge 550.0ns N/A

D07_00M ED HEX C2P24-17

N/A N/C N/A N/A

WRE ED BIN C3P28

N/A Sample Edge 550.0ns N/A

RDE ED BIN C3P27

N/A Sample Edge 550.0ns N/A

Each time a test is initiated within the SR2500, the internal response pipeline has unknown data left over from
the previous test or from the power-on sequence. As such, the Compare Error Flag is asserted, indicating a
compare error, even though a sample comparison has not taken place. If it is desired to use the error flag for
test control or as a pass/fail indicator, it is necessary to reset the error flag. To reset the error flag, it is also
necessary to clock known, error free data into the response pipeline, and issue the CMACRO command to
reset the error flag. A recommended procedure is to use the first two vectors in your test to loop for a few test
cycles, with all inputs masked, and then reset the error flag upon exit from the loop. The vector at which the
error flag is reset becomes the first vector in the test. An example of this procedure is provided in this
revision of RAM_TEST.

To add the real-time compare (response) function, several new fields must be defined, one response field for
each group of pins where data will be compared or recorded. Refer to table 4-12 for the field definitions
being added to the last example. Each of these fields is a response type field. Where the stimulus address
and data bus fields were defined as algorithmic output (ALGO) type fields, the response address and data bus
fields are defined as algorithmic expect (ALGE) type fields. A similar relationship exists between expect and
don'tcare fields as exists between output and tristate fields. An ALGE type field does not have control over
the don'tcare, or mask, condition of an input. So, two response field types are defined for the address and
data bus fields. This provides the ability to ignore certain pins when performing real-time compare functions,
or when calculating CRC values. Note the address fields are sampled at the same time within the test cycle as
the generation of the ALE signal, and the data bus, WR strobe and RD strobe are sample when the data on the
data bus is valid for either a read or write cycle (refer to table 4-12 and figure 4-6).

Table 4-12: RAM_TEST Response Fields

SR2500 User's Manual 4-21

Rev. 05Interface Technology

Chapter 4: Programming Examples

Figure 4-6.
RAM_TEST Read/Write and Sample Timing.

Tables 4-13A and 4-13B show the new CMACRO program, with the pipe
line flush procedure inserted at vectors 1, 2 and 3, and the added response
field pattern definitions and algorithmic commands. The test has also
been extended to include verifying the contents of the address and data
busses during the write cycles by defining the stimulus and response
patterns to be identical for these vectors, and to reading of the 24K of data
that was written in the first part of the test and comparing it to what was
written. This will isolate address and data bus failures during the write
cycles, and RAM failures during the read cycles. A passed test results in
the compare error flag being reset, and a failure is indicated by the error
flag being set. Two methods are provided within the SR2500 for reading
the status of a tests error flag. Both examples will be provided at the end
of the test program listing.

/***** Test Program Listing for RAM_TEST, Rev 2 *****/

/* Define Test Parameters */

TEST:DEF RAM_TEST:SIZE 1024
SYST:TEST RAM_TEST
SYST:TEST RAM_TEST
SOUR:ROSC:SOUR INT
SYST:PROG 1
SYST:FREQ 1.481000MHZ
SYST:CLOC:SOUR INT

Note

In order to correlate all of the field
patterns and algorithmic com-
mands with the CMACRO pro-
gram, the CMACRO program is
listed twice, with each listing cor-
relating to a subset of the total
fields defined. There is only ONE
(1) CMACRO PROGRAM, and
both stimulus and response vec-
tor sequencing is controlled by that
one CMACRO program. You do
not create a separate CMACRO
program for stimulus and re-
sponse fields.

���

$$$$$

����

$$$

�

���#�	 ���#�	

����#��
���#�� ���#��

�� ��

���

��

��

��
���

��-���
�� ���+& +&

+&

+&

+&+&+&

����������%&"��'()%�*���+&,

+&
+&

SR2500 User's Manual

Rev. 05 Interface Technology

4-22 Chapter 4: Programming Examples

Table 4-13A: RAM_TEST Program and Patterns (rev 2)

Test Program and Pattern Definition Worksheet
CMACRO Program Stimulus/Expected Response Fields

Vectors Label Command Condition A15_08O A15_08T A15_08E A15_08M

1 StartProgram NONA FF NONA XX

2 WordLoop Until COUNt==10 NONA FF NONA XX

3 CLEARError NONA 1F NONA 1F

4 StartLoop until COUNt==96 INC INC

5 WordLoop until COUNt==254 HOLDA HOLDA

6 EndLoop HOLDA HOLDA

7 OUT NONA 1F NONA 1F

8 StartLoop until COUNt==96 INC INC

9 WordLoop until COUNt==254 HOLDA HOLDA

10 EndLoop HOLDA HOLDA

11 EndProgram NONA FF NONA XX

Vectors Label Command Condition WRO WRE RDO RDE

1 StartProgram 1 X 1 X

2 WordLoop until COUNt==10 1 X 1 X

3 CLEARError 1 X 1 X

4 StartLoop until COUNt==96 0 X 1 X

5 WordLoop until COUNt==254 0 X 1 X

6 EndLoop 0 X 1 X

7 OUT 1 X 1 X

8 StartLoop until COUNt==96 1 X 0 X

9 WordLoop until COUNt==254 1 X 0 X

10 EndLoop 1 X 0 X

11 EndProgram 1 X 1 X

/* Define Fields */

FIELD:DEF A15_08O:TYPE ALGO:PIN C1P16-9
FIEL:NAME A15_08O:RAD HEX
FIELD:DEF A15_08T:TYPE OT:PIN C1P16-9
FIEL:NAME A15_08T:RAD HEX
FIELD:DEF A07_00O:TYPE ALGO:PIN C1P8-1
FIEL:NAME A07_00O:RAD HEX
FIELD:DEF A07_00T:TYPE OT:PIN C1P8-1

SR2500 User's Manual 4-23

Rev. 05Interface Technology

Chapter 4: Programming Examples

Test Pattern Definition Worksheet (continued)
Stimulus/Expected Response Fields

A07_00O A07_00T A07_00E A07_00M D07_00O D07_00T D07_00E D07_00M

NONA FF NONA XX NONA FF NONA XX

NONA FF NONA XX NONA FF NONA XX

NONA FF NONA FF NONA 55 NONA 55

INC INC XOR FF XOR FF

INC INC XOR FF XOR FF

INC INC XOR FF XOR FF

NONA FF NONA FF NONA XX NONA 55/XX

INC INC NONA XX XOR FF

INC INC NONA XX XOR FF

INC INC NONA XX XOR FF

NONA FF NONA XX NONA FF NONA XX

ALE PSEN

0 1

0 1

0 1

1 1

1 1

1 1

0 1

1 1

1 1

1 1

0 1

Table 4-13B: RAM_TEST Patterns (rev 2)

FIEL:NAME A07_00T:RAD HEX
FIELD:DEF D07_00O:TYPE ALGO:PIN C2P24-17
FIEL:NAME D07_00O:RAD HEX
FIELD:DEF D07_00T:TYPE OT:PIN C2P24-17
FIEL:NAME D07_00T:RAD HEX
FIELD:DEF ALE:TYPE OT:PIN C3P25
FIEL:NAME ALE:RAD BIN
FIELD:DEF WRO:TYPE OT:PIN C3P28
FIEL:NAME WRO:RAD BIN

SR2500 User's Manual

Rev. 05 Interface Technology

4-24 Chapter 4: Programming Examples

FIELD:DEF RDO:TYPE OT:PIN C3P27
FIEL:NAME RDO:RAD BIN
FIELD:DEF PSEN:TYPE OT:PIN C2P26
FIEL:NAME PSEN:RAD BIN
FIELD:DEF A15_08E:TYPE ALGE:PIN C1P16-9
FIEL:NAME A15_08E:RAD HEX
FIELD:DEF A15_08M:TYPE ED:PIN C1P16-9
FIEL:NAME A15_08M:RAD HEX
FIELD:DEF A07_00E:TYPE ALGE:PIN C1P8-1
FIEL:NAME A07_00E:RAD HEX
FIELD:DEF A07_00M:TYPE ED:PIN C1P8-1
FIEL:NAME A07_00M:RAD HEX
FIELD:DEF D07_00E:TYPE ALGE:PIN C2P24-17
FIEL:NAME D07_00E:RAD HEX
FIELD:DEF D07_00M:TYPE ED:PIN C2P24-17
FIEL:NAME D07_00M:RAD HEX
FIELD:DEF WRE:TYPE ED:PIN C3P28
FIEL:NAME WRE:RAD BIN
FIELD:DEF RDE:TYPE ED:PIN C3P27
FIEL:NAME RDE:RAD BIN

/* Define Stimulus Data Formats and Response Sample Formats */

STIM:COND:OFOR:FIEL A07_00O;MODE RI,0.000000 E-9,80.000000 E-9
STIM:COND:OFOR:FIEL D07_00O;MODE RI,200.000000 E-9,465.000000 E-9
STIM:COND:OFOR:FIEL ALE;MODE RZ,0.000000 E-9,30.000000 E-9
STIM:COND:OFOR:FIEL WRO;MODE RONE,230.000000 E-9,400.000000 E-9
STIM:COND:OFOR:FIEL RDO;MODE RONE,230.000000 E-9,400.000000 E-9
REC:COND:SAMP:FIEL D07_00E;MODE EDGE,550.000000 E-9
REC:COND:SAMP:FIEL WRE;MODE EDGE,550.000000 E-9
REC:COND:SAMP:FIEL RDE;MODE EDGE,550.000000 E-9
REC:COND:SAMP:FIEL A15_08E;MODE EDGE,30.000000 E-9
REC:COND:SAMP:FIEL A07_00E;MODE EDGE,30.000000 E-9

/* Define CMACRO Program */

STIM:VEC 1;COUN 1;CMAC:DEF (SP(OUT))
STIM:VEC 2;COUN 1;CMAC:DEF (WL(OUT(COUN == 10)))
STIM:VEC 3;COUN 1;CMAC:DEF (CLEARE(OUT))
STIM:VEC 4;COUN 1;CMAC:DEF (SL(OUT(COUN == 96)))
STIM:VEC 5;COUN 1;CMAC:DEF (WL(OUT(COUN == 254)))
STIM:VEC 6;COUN 1;CMAC:DEF (EL(OUT))
STIM:VEC 7;COUN 1;CMAC:DEF (OUT(OUT))
STIM:VEC 8;COUN 1;CMAC:DEF (SL(OUT(COUN == 96)))
STIM:VEC 9;COUN 1;CMAC:DEF (WL(OUT(COUN == 254)))
STIM:VEC 10;COUN 1;CMAC:DEF (EL(OUT))
STIM:VEC 11;COUN 1;CMAC:DEF (EP(OUT))

SR2500 User's Manual 4-25

Rev. 05Interface Technology

Chapter 4: Programming Examples

/* Load Stimulus/Response Data Patterns and Algorithmic Commands */

STIM:VEC 1;COUN 11;AMAC:FIEL A15_08O;PATT NONA, NONA, NONA, INC, HOLDA, HOLDA, NONA, INC,
HOLDA, HOLDA, NONA
STIM:VEC 1;COUN 11;DATA:FIEL A15_08T;PATT FF, FF, 1F, 00, 00, 00, 1F, 00, 00, 00, FF
REC:VEC 1;COUN 11;AMAC:FIEL A15_08E;PATT NONA, NONA, NONA, INC, HOLDA, HOLDA, NONA, INC,
HOLDA, HOLDA, NONA
REC:VEC 1;COUN 11;DATA:FIEL A15_08M;PATT XX, XX, 1F, 00, 00, 00, 1F, 00, 00, 00, XX

STIM:VEC 1;COUN 11;AMAC:FIEL A07_00O;PATT NONA, NONA, NONA, INC, INC, INC, NONA, INC, INC,
INC, NONA
STIM:VEC 1;COUN 11;DATA:FIEL A07_00T;PATT FF, FF, FF, 00, 00, 00, FF, 00, 00, 00, FF
REC:VEC 1;COUN 11;AMAC:FIEL A07_00E;PATT NONA, NONA, NONA, INC, INC, INC, NONA, INC, INC,
INC, NONA
REC:VEC 1;COUN 11;DATA:FIEL A07_00M;PATT XX, XX, FF, 00, 00, 00, FF, 00, 00, 00, XX

STIM:VEC 1;COUN 11;AMAC:FIEL D07_00O;PATT NONA, NONA, NONA, XOR, XOR, XOR, NONA, NONA,
NONA, NONA, NONA
STIM:VEC 1;COUN 11;DATA:FIEL D07_00T;PATT FF, FF, 55, FF, FF, FF, XX, XX, XX, XX, FF
REC:VEC 1;COUN 11;AMAC:FIEL D07_00E;PATT NONA, NONA, NONA, XOR, XOR, XOR, NONA, XOR, XOR,
XOR, NONA
REC:VEC 1;COUN 11;DATA:FIEL D07_00M;PATT XX, XX, 55, FF, FF, FF, XX, FF, FF, FF, XX
REC:VEC 7;COUN 1;DATA:FIEL D07_00E;PATT 55

Note
At vector 7, the data bus is being tristated for the pending read cycles. The response ALU must be
initialized in anticipation of the alternating 0xAA/0x55 pattern being read from the UUT, yet all input pins
for the field should be ignored at vector 7. In all other fields this is not a concern as the SR2500 is
generating the pattern on the input pins, so the expected pattern can be anticipated. However, the data
bus is not being driven by the SR2500 at vector 7. Since the data bus is floating, and their state is
unknown, the data bus inputs should be masked. Notice that field D07_00M, vector 7, is masked (XX),
yet the pattern of 0x55 is used to initialize the response ALU two program lines later (rec:vec 7;coun
1;data:fiel D07_00E;patt 55). An ALGE (and ALGO) type field is a combined field of algorithmic com-
mands and expect (output) memory. To load pattern memory instead of algorithmic commands, use the
word "DATA" in place of "AMAC".

STIM:VEC 1;COUN 11;DATA:FIEL ALE;PATT 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0
STIM:VEC 1;COUN 11;DATA:FIEL WRO;FILL:TYPE REP;PATT 1;EXEC
STIM:VEC 4;COUN 3;DATA:FIEL WRO;FILL:TYPE REP;PATT 0;EXEC
REC:VEC 1;COUN 11;DATA:FIEL WRE;PATT X, X, X, X, X, X, X, X, X, X, X
STIM:VEC 1;COUN 11;DATA:FIEL RDO;FILL:TYPE REP;PATT 1;EXEC
STIM:VEC 8;COUN 3;DATA:FIEL RDO;FILL:TYPE REP;PATT 0;EXEC
REC:VEC 1;COUN 11;DATA:FIEL RDE;PATT X, X, X, X, X, X, X, X, X, X, X
STIM:VEC 1;COUN 11;DATA:FIEL PSEN;FILL:TYPE REP;PATT 1;EXEC

SR2500 User's Manual

Rev. 05 Interface Technology

4-26 Chapter 4: Programming Examples

/* Define Run-Time Parameters */

STIM:ARMD:FIELD A15_08T;PATT #hFF
STIM:ARMD:FIELD A07_00T;PATT #hFF
STIM:ARMD:FIELD D07_00T;PATT #hFF
STIM:ARMD:FIELD ALE;PATT #h0
STIM:ARMD:FIELD WRO;PATT #h1
STIM:ARMD:FIELD RDO;PATT #h1
STIM:ARMD:FIELD PSEN;PATT #h1

/* Initiate the Test and Trigger */

INIT
*TRG

/***** Query the pass/fail state using either of the following *****/

/* Query the status of the test (includes state of error flag)*/

TEST:NAME RAM_TEST:STAT?

/* Query the state of the Error Flag only */

REC:DATA:ERR?

Recording UUT Responses

Using the error flag is one method of determining pass/fail of a device being tested. However, if a failure
occurs, the error flag can not indicate the cause of the failure. In this case, it is necessary to record data from
the UUT while the test is being performed. Evaluation of the captured data will lead to the failed device.

The SR2500 has great flexibility not only over what information is recorded from the UUT, but in how that
information is recorded. This control is provided via the TRACE subsystem. The trace subsystem is, for all
practical purposes, an independent logic analyzer packaged with the SR2500 and clocked from a common
clock. However, it maintains independent control of what information is stored to the record memory, and
under what conditions that information is stored. The trace subsystem also control under what conditions
CRC calculations are performed.

This third version of the RAM_TEST program will incorporate the Trace Functions to record data from the
UUT and enable CRC calculations. The recorded data and CRC signatures may be queried after the test is
complete for evaluation, or for comparison to known good signatures. The trace subsystem is used like you
would a Logic Analyzer. If information from multiple sources must be correlated, then all of that information
must be provided to input pins in the SR2500 system and recorded.

In this example, the address and data busses must be recorded in order to pinpoint at what address the RAM
failed, if a failure is detected. So, even though an address bus is usually an output only bus, this application
will connect the stimulus address pins to response address pins. In order to determine if the failure occurred
during the read or write cycle, both the WR and RD control signals are also connected to input pins.

SR2500 User's Manual 4-27

Rev. 05Interface Technology

Chapter 4: Programming Examples

Table 4-14: RAM_TEST Response and Record Fields (rev 3)

ADDR REC HEX C1P16-1

N/A N/C N/A N/A

ADDRE ED HEX C1P16-1

N/A N/C N/A N/A

DATA REC HEX C2P24-17

N/A N/C N/A N/A

DATAE ED HEX C2P24-17

N/A N/C N/A N/A

WR_RD REC BIN C3P28-27

N/A N/C N/A N/A

WR_RDE ED BIN C3P28-27

N/A N/C N/A N/A

Field Definition Parameters
Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Field Name: Field Type: Field Radix: Pin List:

Arm Pattern: Format: Assert: Pulse Width:

Six new fields are added to the test, a record and expect address field, a record and expect data field, and a
record and expect write/read field. The Record Fields are where the data returned by the UUT will be stored,
or, more precisely, these fields provide access to the recorded data. Refer to table 4-14. The expect fields
provide a more convenient format for defining the address, data and write/read control trigger patterns. Field
ADDR is a Super-set of the A15_08 and A07_00 fields. By combining both address fields into one, the RAM
address may be viewed as one address, not an upper and lower address. The same is true for the WR_RD
field. By combining both the write and the read control signals into one field, it is easy to determine the
direction of the data flow during the cycle.

The CMACRO program, stimulus patterns and response patterns do not need to be modified. However, the
trace parameters do need to be defined. To assist in the definition of the trace parameters, it is first necessary
to plan what information to record, and under what conditions. The SR2500 will start recording on the first
write cycle (address 0x2000) of the test, and then record 511 additional samples, then wait for the first read
cycle (also address 0x2000) of the test and record the read cycle and the next 511 read cycles. This allows
you to verify the write and read process is working.

The first step is to determine if Qualifier Triggers will be used. Qualifier triggers are logic record trigger
patterns which may be used by the trace subsystem, or by a CMACRO program. Qualifier triggers may be
combined together in Qualifier Combinations (QCOM) for use as multi-condition triggers. Example 1 will
use 2 qualifier triggers and 2 QCOM's. Qualifier trigger 1 will be looking for address 0x2000 and WR active
low. Qualifier trigger 2 will be looking for address 0x2000 and RD active low. Refer to table 4-15.

SR2500 User's Manual

Rev. 05 Interface Technology

4-28 Chapter 4: Programming Examples

Table 4-15: Qualifier Trigger, QCOM and Trace Sequence Definitions

SR2500 User's Manual 4-29

Rev. 05Interface Technology

Chapter 4: Programming Examples

Next, the Qualifier Triggers are combined into QCOM's, also in table 4-15. Up to all eight of the qualifier
trigger patterns may be used in a single QCOM, or they may be used individually, as in this example. QCOM
1 consists of only qualifier trigger 1, and QCOM 2 consists of only qualifier trigger 2.

The last step is to define the Trace Sequence Controls and CRC Controls. The first parameter, the Record
Filter, defines what to put into the record memory, data or errors. The second parameter, Record On, defines
when to record data. Data may be recorded Never, Always, on Real-Time Compare True, on Real-Time
Compare False, or on one of the QCOM's. The CRC Sample On parameter defines when the input data will
be used in a CRC calculation. The allowable parameters are the same as for the Record On parameter.
Advance On defines when you advance from the current sequence number, to the next. Advance On works
with the Advance Count, which defines how many times the Advance On condition must be met in order to
advance. The Advance On parameters are the same as the CRC Sample On and the Record On. The Jump
On parameter is similar to the Advance On parameter in that it also defines a condition in which the current
trace sequence will be exited. In this case, though, instead of advancing to the next sequence, you jump to the
sequence number defined by the Jump To parameter. There are 16 trace sequence levels. Finally, the Stop
parameters tells the SR2500 to halt test execution when that trace sequence level is reached. As the stop flag
is polled by the microprocessor, the polling overhead and overhead associated with halting the test dictate that
the halt will not be immediate.

In this example, trace sequence 1 is defined to record data, only when QCOM1 matches, never calculate
CRC, advance to sequence 2 when QCOM1 matches 1 time, never jump and do not stop. Trace sequence 2 is
defined to record data, record always, never calculate CRC, advance to sequence 3 after 511 clock cycles,
never jump and do not stop. Trace sequence 3 is defined to record data, only when QCOM2 matches, never
calculate CRC, advance to sequence 4 when QCOM2 matches 1 time, never jump and do not stop. Trace
sequence 4 is defined to record data, record always, never calculate CRC, advance to sequence 5 after 511
clock cycles, never jump and do not stop. Trace sequence 5 is defined to never record, never sample CRC,
never advance and never jump to a new sequence, effectively halting the record process.

The following listing should be added to the program listing for RAM_TEST version 2.

/* New Field Definitions */

FIELD:DEF ADDR:TYPE REC:PIN C1P16-1
FIEL:NAME ADDR:RAD HEX
FIELD:DEF ADDRE:TYPE ED:PIN C1P16-1
FIEL:NAME ADDRE:RAD HEX
FIELD:DEF DATA:TYPE REC:PIN C2P24-17
FIEL:NAME DATA:RAD HEX
FIELD:DEF DATAE:TYPE ED:PIN C2P24-17
FIEL:NAME DATAE:RAD HEX
FIELD:DEF WR_RD:TYPE REC:PIN C3P28-27
FIEL:NAME WR_RD:RAD BIN
FIELD:DEF WR_RDE:TYPE ED:PIN C3P28-27
FIEL:NAME WR_RDE:RAD BIN

SR2500 User's Manual

Rev. 05 Interface Technology

4-30 Chapter 4: Programming Examples

/* Define Qualifier Trigger Patterns */

REC:TRAC:QUAL 1:FIEL ADDRE;PATT #H2000
REC:TRAC:QUAL 1:FIEL DATAE;PATT #HXX
REC:TRAC:QUAL 1:FIEL WR_RDE;PATT #H01
REC:TRAC:QUAL 2:FIEL ADDRE;PATT #H2000
REC:TRAC:QUAL 2:FIEL DATAE;PATT #HXX
REC:TRAC:QUAL 2:FIEL WR_RDE;PATT #H10

/* Define Qualifier Combinations */

REC:TRAC:QCOM1 1
REC:TRAC:QCOM2 2

/* Define Trace Sequence Parameters */

REC:TRAC:SEQ 1:DEF:FIL DAT:REC QCOM1
REC:TRAC:SEQ 1:DEF:CRC:CAL NEV
REC:TRAC:SEQ 1:DEF:ADVS:ON QCOM1:COUN 1
REC:TRAC:SEQ 1:DEF:JUMP 1:ON NEV
REC:TRAC:SEQ 2:DEF:FIL DAT:REC ALW
REC:TRAC:SEQ 2:DEF:CRC:CAL NEV
REC:TRAC:SEQ 2:DEF:ADVS:ON CLOC:COUN 511
REC:TRAC:SEQ 2:DEF:JUMP 1:ON NEV
REC:TRAC:SEQ 3:DEF:FIL DAT:REC QCOM2
REC:TRAC:SEQ 3:DEF:CRC:CAL NEV
REC:TRAC:SEQ 3:DEF:ADVS:ON QCOM2:COUN 1
REC:TRAC:SEQ 3:DEF:JUMP 1:ON NEV
REC:TRAC:SEQ 4:DEF:FIL DAT:REC ALW
REC:TRAC:SEQ 4:DEF:CRC:CAL NEV
REC:TRAC:SEQ 4:DEF:ADVS:ON CLOC:COUN 511
REC:TRAC:SEQ 4:DEF:JUMP 1:ON NEV
REC:TRAC:SEQ 5:DEF:FIL DAT:REC NEV
REC:TRAC:SEQ 5:DEF:CRC:CAL NEV
REC:TRAC:SEQ 5:DEF:ADVS:ON NEV:COUN 1
REC:TRAC:SEQ 5:DEF:JUMP 1:ON NEV

/* Initiate Test and Trigger */

INIT
*TRG

Once the test has completed, the address data and read/write control values may be queried using the
REC:DATA:PATT? query command. Trace parameters may be modified to record on errors, capture errors,
enable CRC calculation, or whatever function is appropriate to the diagnostics requirements.

Published by
Interface Technology, Inc.

300 S. Lemon Creek Drive
Walnut, CA 91789

User's Manual

SR2510 Main Module

Rev. 05 Apr 1998
Chg. 09 Sep 2003

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

�����������

	
��������
��
�����������

�������������������������

Record of Changes

Entered By
Title or

Brief Description
Date of
Change

Change
No.

SR2510 User's Manual

Reformat

Revised external power supply info (pg 3-3); added pinout data
for differential TTL (pg 3-18, 3-19).

Added coverage for differential TTL (pg 2-24, 2-25).

Reformat pages 1-8 thru 1-10 (specifications).

Added LVDS I/O, pgs 1-6, 1-10, 1-11, 2-25, 2-26, 3-18, 3-19

Corrected connector orientaion in Figs 3-9 thru 3-18 and added
note explaining relationship of pinout views to instrument
illustrations. Added power sequencing note to page 3-3.

Reformatted specifications page, pg 1-8. Deleted pages 1-9
thru 1-12.

pg. 2-25 ... 1st para., 2nd and 3rd lines ... changed "...-4V to
+7V" to "... -3V to +7V"; changed "... -4 to +5.5V" to "... -2.9 to
+5.5V."

Corrected connector pinouts in Fig 3-16 (pins B01 and B02)

Corrected I/O Characteristics table on pg. 1-8. Corrected
Figures 2-7 and 2-8; added Fig 2-13. Added pgs 2-27 (3.3 V I/
O) and 2-28 (blank). Updated Fig 3-10 and 3-11 to include 3.3
V I/O.

Apr 98

Mar 00

Mar 00

May 00

Jun 00

Oct 00

Sep 01

May 03

May 03

Oct 03

Rev 05

Change 1

Change 2

Change 3

Change 4

Change 5

Change 6

Change 7

Change 8

Change 9

Factory

Factory

Factory

Factory

Factory

Factory

Factory

Factory

Factory

Factory

SR2510 User's Manual iii

Rev. 05Interface Technology

Table of Contents

Contents
Chapter 1
General Information

About This Manual .. 1-1
Arrangement of Contentsl ... 1-1
Applicability ... 1-1
Supersedure Notice ... 1-1

Equipment Description .. 1-1
Timing/Control Board ... 1-1
Features ... 1-2
I/O Boards ... 1-2
VXI Bus Interface ... 1-2

Real Time Digital Testing.. 1-3
Power Macro Commands

Control Test Execution & Data Analysis .. 1-3
High Performance Response Logic Analysis .. 1-4
Controls and Indicators .. 1-5
Timing/Control Connectors ... 1-6
Interconnection With I/O Modules .. 1-7
Specifications .. 1-8

Block Diagram ... 2-1
Timing/Control Board ... 2-1

Dynamic RAM .. 2-2
EPROM ... 2-2
Flash RAM .. 2-2
VXI Interface .. 2-2
VME A32 Memory ... 2-2
Control Processor and Memory .. 2-2
PLO Interface .. 2-2
Input Buffer Thresholds .. 2-2

IT9010M VXI Interface .. 2-4
VME A32 Memory .. 2-4
Phase Locked Oscillator (PLO) ... 2-5

Frequency Resolution ... 2-5
Frequency Accuracy ... 2-6

Control Gate Array .. 2-6
Control Processor .. 2-6

Record State Machine ... 2-13
Filter .. 2-13
Record ... 2-13
CRC ... 2-14
Advance Sequence .. 2-14
Jump To Sequence .. 2-15
Stop ... 2-15

I/O Board ... 2-15

Chapter 2
Theory of Operation

SR2510 User's Manual iv

Rev. 05Interface Technology

Table of Contents

Contents (continued)

Stimulus and Response Memory ... 2-16
Record Memory ... 2-16
Delayed Clock Generators ... 2-17
Stimulus Gate Arrays .. 2-17

Algorithmic Stimulus Pattern Generator .. 2-17
Stimulus Output Pin Formatter ... 2-18

Response Gate Arrays
Expected Response Pattern Generator .. 2-19
Response Input Formatter ... 2-20
Response Comparator ... 2-20
Input Qualifier ... 2-20
Record Control .. 2-20
CRC Logic .. 2-20

Algorithmic Commands .. 2-22
NONAlgorithmic .. 2-22
INCrement ... 2-22
DECrement .. 2-22
XOR .. 2-23
SLEFTZero ... 2-23
SLEFTOne .. 2-23
SLEFTComplement .. 2-23
RLEFT .. 2-23
SRIGHTZero ... 2-23

Driver/Receiver Board ... 2-24
TTL Driver/Receiver Logic .. 2-24
CMOS Driver/Receiver Logic .. 2-24
Differential ECL Driver/Receiver Logic .. 2-25
Programmable Driver/Receiver Logic .. 2-25

Scope of Chapter ... 3-1
Unpacking and Inspection ... 3-1
Installation ... 3-1

Logical Addressing ... 3-1
Slot Dependency .. 3-2
Backplane Jumpers .. 3-2

SR2510 Main Module ... 3-2
SR2520 Expansion Module .. 3-2

5 Vdc External Power Requirements .. 3-2
Option Switch .. 3-4
Option Switch Settings .. 3-4

Host Controller Selection .. 3-4
Power-On Diagnostic Test (fast/slow) .. 3-5
Opterating Protocol, Bus Master/Release-on-Request 3-6

Chapter 3
Installation

SR2510 User's Manual v

Rev. 05Interface Technology

Table of Contents

Contents (continued)

Test Post-Processor Speed (fast/slow) .. 3-6
Boot Mode (EPROM/Flash ROM) ... 3-7

Main and Expansion Module Interconnect ... 3-8
Installing I/O Boards ... 3-10
Required Equipment
Procedure ... Install I/O Bd No.2 ... 3-10
Procedure ... Install I/O Bd No.3 ... 3-11

Fig. 1-1, SR2510 Module With Three I/O Boards
and Six Driver/Receiver Boards ... 1-3

Fig. 1-2, VXI Chassis Showing SR2510 Main Module
and SR2520 Expansion I/O Module ... 1-4

Fig. 1-3, LED Indicators .. 1-5
Fig. 1-4, Connectors .. 1-6
Fig. 1-5, SR2510 and SR2520 Interconnection, Top View 1-7
Fig. 2-1, SR2510 Block Diagram, Major Components 2-1
Fig. 2-2, SR2510 Timing/Control Board Block Diagram 2-3
Fig.2-3, Control Processor Gate Array Block Diagram 2-8
Fig. 2-4, SR2510 I/O Board Block Diagram ... 2-16
Fig. 2-5, Stimulus Gate Array Block Diagram 2-18
Fig. 2-6, Response Gate Array .. 2-19
Fig. 2-7, TTL Single Ended Driver/Receiver (16 per D/R Board) 2-26
Fig. 2-8, CMOS Single Ended Driver/Receiver (16 per D/R Board) 2-26
Fig. 2-9, Differential ECL Driver/Receiver (16 per D/R Board) 2-26
Fig. 2-10, Programmable Driver/Receiver (32 per D/R Board) 2-17
Fig. 3-1, Address Switches Set to Logical Address 12(hex) 3-1
Fig. 3-2, Connection of External 5 Vdc Operating Power 3-3
Fig. 3-3, Option Switch SW3 .. 3-5
Fig. 3-4, Interconnect Between SR2510 and SR2520, Top View 3-8
Fig. 3-5, SR2510 and SR2520 Interconnect Connectors 3-9
Fig. 3-6, Cover Screws .. 3-12
Fig. 3-7, I/O Board Mounting Hardware ... 3-13
Fig. 3-8a, Buildup of Standoff Spacers at Positions 1-3

for Configurations of One, Two, and Three I/O Boards 3-14
Fig. 3-8b, Buildup of Standoff Spacers at Position 4

for Configurations of One, Two, and Three I/O Boards 3-14
Fig. 3-9, SR2510 Input Flags Connector ... 3-15
Fig. 3-10, SR2510 Signal Connector Pinouts,

TTL or CMOS, Ch. 00-15 ... 3-16
Fig. 3-11, SR2510 Signal Connector Pinouts,

TTL or CMOS, Ch. 16-31 ... 3-17

List of Figures

SR2510 User's Manual vi

Rev. 05Interface Technology

Table of Contents

Contents (continued)

Fig. 3-12, SR2510 Signal Connector Pinouts,
Differential ECL, Ch. 00-15 ... 3-18

Fig. 3-13, SR2510 Signal Connector Pinouts,
Differential ECL, Ch. 16-31 ... 3-19

Fig. 3-14, SR2510 Signal Connector Pinouts,
Variable Voltage, Ch. 00-31 .. 3-20

Fig. 3-15, SR2510 Rail Voltage Connector Pinouts 3-21
Fig. 3-16, SR2510 Auxiliary Power Connector Pinouts 3-22

SR2510 User's Manual 1-1

Rev. 05Interface Technology

Chapter 1: General Information

C H A P T E R 1

General Information
This manual provides installation and operation information for the
Interface Technology SR2510 Timing / Control / I/O Module. Information
contained herein is intended for use by technical personnel involved in the
actual installation and operation of the subject instrument.

Arrangement of Contents

Information contained in this manual is arranged in five chapters, as
follows:

• Chapter 1 General Information
• Chapter 2 Theory of Operation
• Chapter 3 Installation

Applicability

The information contained in this manual covers a single equipment
configuration designated SR2510 Timing / Control / I/O Module. Differ-
ences, if any, between this equipment and the actual equipment supplied
are covered by Difference Data included at the front of this manual.

Supersedure Notice

This manual supersedes SR2500 User's Manual, Rev.04 and all previous
issues of this publication.

See Fig.1-1. The SR2510 serves both as the overall SR2500 system timer/
controller, and as the stimulus/response input/output interface with the
UUT (Unit Under Test). The major components of the SR2510 include a
Timing/Control board, from one, two, or three I/O boards, and up to six
Driver/Receiver boards (2 per I/O board). Other components include
boards for timing distribution, power distribution and interface logic.

Timing/Control Board.

The SR2510 Timing/Control board provides clocking and test sequence
control functions for all I/O boards, both those within the SR2510 module
itself, and for any and all additional I/O boards contained in any expansion
SR2520 I/O Modules used in the same SR2500 subsystem. The Timing/
Control Board parses and interprets VXI word-serial commands from the
Slot-0 Controller and provides overall system setup and test monitoring.
It also provides real-time control over the test pattern sequencing. With its
built-in control processor, the SR2510 is capable of providing sequential

About This Manual

Equipment Description

SR2510 User's Manual

Interface Technology

1-2 Chapter 1: General Information

Rev. 05

Features

� DC to 25 MHz Data Rates.

� 64K Vector Depth, 256K
Optional.

� Stimulus / Response / Real-
Time Compare / Record.

� 32, 64, or 96 Inputs and 32,
64, or 96 Outputs in a Dual-
Slot VXI Module.

� Expandable to 576 Inputs
and 576 Outputs in a Single
VXI Chassis.

� RAM-Backed and Algorithmic
Pattern Generation.

� Multi-Level Triggering and
Advanced Logic Analysis.

� Data Formatting with Pro-
grammable Edge Placement.

� Message-Based SCPI
Commands and Software
Drivers for Easy Test Pro-
gram Development.

� A32 / D32 Binary Transfer for
High-Speed Test Program
Download.

� Conditional Pattern Looping
and Branching for Real time
Test Sequence Control.

� Multiple Logic Families
Supported Through Plug-In
Modules.

� Software Compatible With
Interface Technology's
SR5000.

� Optional Guided Probe.

or nested program looping, plus conditional or unconditional jumps and
subroutines. Overall test timing is provided by an internal, programmable,
200 Hz to 25 MHz frequency synthesized clock source or by external
inputs for clocks, gates, test inputs and triggers.

The Timing/Control board has a dual processor architecture that is opti-
mized for digital testing. The 25 MHz 68030 system processor provides
the VXIbus message-based interface to the Slot-0 Controller. The control
processor is the real-time digital test engine controlling the conditional test
branching, looping, sequencing and logic analysis trigger evaluation.

I/O Boards

The I/O boards within the SR2510 are register-based companions to the
message-based Timing/Control board. Each I/O board provides 32 I/O
channels. The SR2510 can accommodate up to three I/O boards (up to 96
channels) and up to five SR2520s, each containing up to three I/O boards
(96 channels) can be included in a single SR2500 subsystem. Each I/O
channel generates digital stimulus patterns, provides real-time comparison
capabilities on the response inputs, and contains logic analyzer type
triggering and data recording functions, all at speeds up to 25 MHz.

Each stimulus pin contains output and tristate memories, allowing bidirec-
tional signal paths. The response pin provides expected response and
mask ("don't care") memories, which generate the expected input pattern
used for the real-time comparison. The logic analyzer triggering and
recording subsystem allows the recording of either the actual input pattern
or the results of the real-time comparison of the expected response pattern
and the input pattern (error data). Either may be saved and then later
retrieved from the record memory, in much the same way you would use a
logic analyzer.

The SR2510 is designed to operate with any VXI compatible slot-0
controller that supports the word serial protocol. The command set that
controls test setup and execution is based on the SCPI-syntax command
set.

VXI Bus Interface

Based on the IT9010M industry standard VXI bus interface chip, the
SR2510 meets the requirements of VXI Bus Specification Versions 1.3
and 1.4. The SR2510 VXI bus interface receives message-based com-
mands from the Slot-0 Controller, then becomes the VXI Bus Master to
pass test parameters and data to the SR2520 I/O modules. The System
Processor provides the command power for the SCPI-syntax word serial
command structure.

SR2510 User's Manual 1-3

Rev. 05Interface Technology

Chapter 1: General Information

Real Time Digital Testing

The 25 MHz Control Processor provides real time control of the test pattern sequence by controlling nested
looping and conditional branching. This capability allows the SR2500 to generate stimulus patterns to the
UUT, analyze the UUT response patterns, and determine the next test pattern based on test conditions such as
expected response pass/fail, loop count, external input flags, response trigger qualifiers, etc.

Powerful Macro Commands Control Test Execution and Data Analysis

Stimulus pattern and response compare sequencing is controlled through a Test Program Macro Command
language. The test program language contains over 100 macro command combinations to control the test
sequence. All this digital testing capability is performed at full test speed and in real time, therefore, off-
loading your Slot-0 Controller from extensive response data analysis.

Figure 1-1.
SR2510 Module With Three I/O Boards and Six Driver/Receiver Boards.

�����������	�
���	�

������	��

����	�����	�������

����	���������	�

	��������
�

��	�����	���������	

����������	��	�

����	���������	�

����	������������������	

������	�������
����������	�������
�

�	���	�	������	���	��
�������������� !�"#�

�	���	�	������	���	��
�$%���������� !�"#�

����������&��	�

����	���������	

����	���������	

SR2510 User's Manual

Interface Technology

1-4 Chapter 1: General Information

Rev. 05

High Performance Response Logic Analysis

The Record capability of the SR2500 is similar to that of an advanced logic analyzer. For simple logic
analysis and recording, Trace Macro Commands allow you to quickly and easily program pre-trigger, center-
trigger, and post-trigger conditions.

The Advanced Trace Macro Commands provide a higher level of logic analysis performance by providing 16
Trigger Sequences. Each Trigger Sequence can trigger on any combination of up to 8 Response Qualifier
Trigger Words. When trigger conditions are met, the trigger action can determine whether UUT response
data or UUT compare error data will be recorded to memory. Refer to Chapter 3 "Programming" for discus-
sion of these commands.

Figure 1-2.
VXI Chassis Showing SR2510 Main Module and SR2520 Expansion Module.

� � � � � � � � 	
 �� �� ��

����
�������
������

���
��-��

����-��
�����

�.���-�

���-/0�������

��������

����������

�������

���������

�����������

���
���
���
���
���
���
���
���

���
�
�
�
�
�
�
�
�

���
��

�!

�� ���
�$'%

�()*+,

������
�������

�!

�� � �

�"#$%&'(%
�()*+,

���
��

�) "1��� +"!))%!

������
�232+4�5�� +"!)�5��5�

- 67)%

������
�89:+&2 +��5�

- 67)%

SR2510 User's Manual 1-5

Rev. 05Interface Technology

Chapter 1: General Information

Controls and Indicators

See Fig. 1-3. All the connectors and LEDs for the
SR2510 are located on the module front panel.

LEDs

There are eight LEDs located at the top of the
SR2510 front panel.

• POWER (Green) - The POWER LED is
connected to the system reset signal and is lit
during normal operation. The LED will turn
off during a system reset or if the +5V power
supply drops below +4.7V.

• SYSFAIL (Red) - The SYSFAIL LED is off
during normal operation. During the power-
up sequence the LED is lit until the internal
self-test passes, or remains lit if the self-test
fails. If the self-test fails, error code informa-
tion stored in the Data Low Register indicates
the origin of the self-test failure (See Appen-
dix A of this manual).

• ACCESS (Yellow) - Illuminates briefly each
time the Slot-0 Controller communicates with
the SR2510 Module.

• RUN (Green) - The SR2500 system is
RUNNING.

• ARMED (Green) - The SR2500 system is
armed and waiting for a system trigger.

• BUS MAST (Yellow) - SR2510 Module is
operating in Bus Master mode.

• ERROR (Red) - A programming error has
occurred. The error status can be queried by
sending the "SYSTem:ERRor?" command.
OVRTMP (Red) - Illuiminates if internal
temperature of module reaches the point
where operation may become unstable and/or
component failure is likely to occur.

Figure 1-3.
LED Indicators.

����
�������
������

���
��-��

����-��
�����

�.���-�

����
�������
������

���
��-��

����-��
�����

�.���-�

���-/0�������

��������

����������

�������

���������

�����������

���
���
���
���
���
���
���
���

���
�
�
�
�
�
�
�
�

���
��

�!
������

SR2510 User's Manual

Interface Technology

1-6 Chapter 1: General Information

Rev. 05

Timing/Control Connectors

There are four Input Control Signals, one Output
Control Signal and 8 TTL Input Flags on a 16 pin
connector, plus an auxiliary power input connec-
tor, all located directly below the LEDs.

• 10 MHz REF IN - Alternate reference source
for the internal PLO.

• CLOCK IN - An external clock to be used as
an alternate test timing source.

• TRIGGER IN - An external trigger input used
to trigger a test.

• GATE IN - An external signal used to enable
and disable the system clock.

• CLOCK OUT - An output signal providing
the undivided system clock.

• INPUT FLAGS - The 16-pin Input Flag
connector contains eight signal inputs and
ground returns, numbered 0-7. These signals
are available to control Conditional branching
of the CMACRO program sequence and
subroutines.

• AUX PWR - Connection point for external
power when SR2510 is configured with more
than one 32-channel I/O Board.

I/O Connectors

Each I/O Board (up to 3) has two I/O connectors.
The number of pins, the pin arrangement, and the
pin function varies, depending on the type of logic
for which the I/O Board is configured (TTL, ECL,
CMOS, LVDS or Variable Voltage).

Figure 1-4.
Connectors.

����
�������
������

���
��-��

����-��
�����

�.���-�

���-/0�������

��������

����������

�������

���������

�����������

���
���
���
���
���
���
���
���

���
�
�
�
�
�
�
�
�

���
��

�!
������

�5��� :!6��

�5��� :!6��

�5��� :!6��

Change 4

SR2510 User's Manual 1-7

Rev. 05Interface Technology

Chapter 1: General Information

������	��
	����	����
�

!��	"#$	�%
&'%#	����

�����
!%

���%�

&�����
()%�	���#*

!��	"#$	�%
&'%#	����

& +�
!%

���%�

&�����
()%�	���#*

!��	"#$	�%
&'%#	����

�����
!%

���%�

&�����
()%�	���#*

!��	"#$	�%
&'%#	����

& +�
!%

���%�

&�����
()%�	���#*

������	��
	����	����
�

Figure 1-5.
SR2510 and SR2520 Interconnection, Top View.

Interconnection With I/O Modules

All interconnections between the SR2510 Timing / Control / I/O Module and SR2520 Expansion I/O Modules
are made by means of the VXI backplane, and by a special connector at the side of the module. Interconnec-
tions are completed whenever Expansion Modules are added to the system. No additional cabling between
modules is required. The second, and subsequent, SR2520 modules are connected in a similar manner. Refer
to Chapter 5 "Installation" for additional interconnection information.

Change 9 Interface TechnologyRev. 05

SR2510 SPECIFICATIONS*

CPU:
System Processor Motorola 68EC030 @ 25 MHz
Control Processor 25 MHz Custom Gate Array

Internal Clock:
Range 5.0 ms to 40 ns, 200 Hz to 25 MHz
Resolution < 0.005%
Data Output Jitter 10 MHz reference jitter + 100 ps

(short term RMS)
External Clock:

Range DC to 25 MHz
Pulse Width 20 ns (minimum)
Active Edge Rising or falling
Input Voltage -5.0 to + 10.0 V
Input Threshold -5.0 to +4.99 V, in 20 mV steps
Input Impedance 1 Megohm

External 10 MHz Ref Input:
Input Coupling Capacitor coupled
Input Signal Waveform Square to sine wave
Input Voltage Level 1-5 V p-p
Input Impedance High impedance

External Trigger Input:
Active Edge High or low
Input Voltage -5.0 to + 10.0 V
Input Threshold -5.0 to +4.99 V, in 20 mV steps
Input Impedance 1 Megohm

External Gate Input:
Active Edge Rising or falling
Input Voltage -5.0 to + 10.0 V
Input Threshold -5.0 to +4.99 V, in 20 mV steps
Input Impedance 1 Megohm

External Input Flags:
Receiver Type 74ACT244
Number Eight
Active Level High or Low
Input Voltage Vil < 0.8V; Vih > 2.0 V
Input Impedance 10k ohms

Clock Output:
Driver Type 74F244
Output Level TTL
Pulse Width 20 ns, minimum
Output Termination 50 ohm, series

I/O Timing:
Delay Range 1 Test Cycle
Delay Resolution 5-10 ns, depending on frequency
Stimulus Format Clocks

Resolution 5-10 ns, depending on frequency
Min. Pulse Width 10 ns
Max. Pulse Width 1 Test Cycle - 10 ns

Response Sample Clocks (Edge or Window)
Resolution 5-10 ns, depending on frequency
Min. Window Width 10 ns
Max. Window Width 1 Test Cycle - 10 ns

Setup Time 10.0 ns, min.
Hold Time 10.0 ns, min.
Skew ± 2 ns (typ) across same type I/O,

within single module
3 ± 1 ns (typ), across same type I/O,
cumulative, across multiple modules

Data Formats:
NRZ Non-Return-to-Zero
RZ Return to Zero
RONE Return-to-One
RC Return-to-Complement
RI Return-to-Inhibit / Tristate

VXI Specifications
Interface Compatibility:

SR2510 Message-based, Bus Master/Servant
SR2520 Register-based, Servant
Revision 1.4
Size C-size, Dual slot
Configuration Static
Interrupt Level Programmable 1-7
Triggers TTLTRG 0-7
Memory(SR2510) 1 MB VME A32/D32/D16/D8 (EO)

Power Requirements: (Note 2)
+5.0 volts 21.5 A, max.
-5.2 volts 1.0 A, max.
+12.0 volts 0.1 A, max.
-12.0 volts 0.1 A, max.
-2.0 volts 1.0 A, max.

Note 2: Power values specified are with three TTL I/O cards installed.
Cooling Requirements:

Per Slot Avg. 117 W, maximum per module (Note 2)
Airflow 8 liters / sec per module; 4 liters / sec per slot @

0.2 mm of water pressure / 10°C temp. rise
Environmental Specifications:

Temperature Storage = -40°C to +75°C
Operating = 0°C to +45°C

Humidity 5% to 95% relative, noncondensing

Software Drivers:
National Instruments LabView
National Instruments LabWindows/CVI

* Specifications subject to change without notice.

I/O Characteristics: Differential
TTL I/O

DS26F31M
3.2V typ
0.32V typ

20 mA @ 0.5V
20 mA @ 0.5 V

-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

DS26F32M
0.2V min

±5.0V max
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

TTL I/O

74F125
3.4V typ

0.55V max
64 mA max
15 mA max

-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

74ACT244
-- n/a --

+5.0V max
2.0V min
0.8V max
-- n/a --
-- n/a --
-- n/a --
-- n/a --

10k ohms

Differential
ECL I/O

100324
-1.025V -0.870V1

-1.830V -1.620V1

-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

100325
-- n/a --
-- n/a --

-1.165V -0.870V3

-1.830V -1.475V3

-- n/a --
-- n/a --
-- n/a --
-- n/a --

50 ohms to -2.0V

CMOS I/O

74AC125
4.2V, 24 mA typ
0.4V, 24 mA typ

+24 mA max
-24 mA max

-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

74ACT244
-- n/a --

+5.0V max
2.0V min
0.8V max
-- n/a --
-- n/a --
-- n/a --
-- n/a --

10k ohms

Variable
Voltage I/O

-- n/s --
-1.5V to +7.0V4

-3.0V to + 4.5V4

50 mA max2

50 mA max2

0.0V to 11.0V p-p
10 mV

100 mV
-3.0V to +7.0V

50 ohms

-- n/s --
-- n/a --

-3.0V to +7.0V
-- n/a --
-- n/a --

-2.9V to +5.5V
-2.9V to +5.5V

10 mV
100 mV

> 50k ohms

LVDS I/O

DS90C031
1.14 V typ
1.07 V typ

-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

DS90C032
±200 mV max
-0.3 to 4.8 V

-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

 Output Drivers
Type

High Voltage (Voh)
Low Voltage (Vol)

Sink Current
Source Current

Output Swing
Resolution

Absolute Accuracy
Abs. Max. Volt. (Hi-Z)

Output Impedance

Input Receivers
Type

Diff. Input Volts (Vth)
Max Input Volts

Input Voltage, high (Vih)
Input Voltage low, (Vil)
Input Thrsh, high (Vth)

Input Thrsh, low (Vtl)
Resolution

Absolute Accuracy
Input Impedance

Notes: n/a = not applicable; n/s = not specified; Note 1: Min-Max, Measured with 50 ohm termination to -2.0 V dc bus;
Note 2: Aggregate static source/sink current is 800 mA per 32 channels; Note 3: min-max, single-ended; Note 4: unterminated

3.3V Logic I/O

74LVT125
3.2V typ

0.3V
32 mA max
-32mA max

-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

74ACT244
-- n/a --

+5.0V max
2.0V min
0.8V max
-- n/a --
-- n/a --
-- n/a --
-- n/a --

10k ohms

SR2510 User's Manual 2-1

Rev. 05Interface Technology

Chapter 2: Theory of Operation

�����������������

Theory of Operation
Block Diagram See Fig 2-1. The major components of the SR2510 are a Timing/Control

circuit board, up to three I/O boards, and up to six Driver/Receiver circuit
boards (2 for each I/O board). Other components include circuit boards
for timing distribution, power distribution and interface logic for SR2520
expansion modules. The major components -- Timing/Control board, I/O
boards, and Driver/Receier boards -- are shown in Fig 2-1.

Fig 2-1. SR2510 Block Diagram, Major Components.

See Fig 2-2. The Timing/Control board contains a 25 MHz 68EC030
microprocessor (system processor) that provides the basic user interface to
the SR2500 system. The 25 MHz 68EC030 system processor is used to
interpret and execute the SCPI word serial commands. It also serves as
bus master when transferring data to the SR2520 expansion modules.
This processor forms the basic user interface of the SR2500 subsystem
and is responsible for non-real-time setup, query, and control functions
such as loading and compiling a test, initializing and arming the hardware,
monitoring a test in progress and returning test results to the host. The
system processor has access to all of the following sub-systems:

Timing/Control Board

SR2510 User's Manual

Interface Technology

2-2 Chapter 2: Theory of Operation

Rev. 05

Dynamic RAM

This 8 MByte RAM is used to store test configuration and management
data for the SR2500 system.

EPROM

The SR2500 operating system is stored in a 512 Kbyte EPROM memory.

Flash RAM

The SR2510 Timing/Control board may be configured with 512 KBytes of
flash RAM.

VXI Interface

The SR2510 is a message-based VXI instrument. The VXI interface is
based on the Interface Technology IT9010M message-based VXI interface
chip. The system processor has access to all of the registers within the
IT9010M.

VME A32 Memory

The 1 MByte A32 memory provides a high-speed alternative for transfer-
ring test setups and data to/from the SR2500 subsystem. Data can be
transferred to/from the slot-0 controller to/from the A32 memory using
D8, D16 or D32 transfers. Data is transferred between the SR2510 and
SR2520 modules using D32 only.

Control Processor and Memory

The system processor has direct access to registers within the control
processor, which are used during initialization and operation of test
programs. The system processor also has read/write access to the control
processor’s instruction memory when the control processor is stopped,
allowing the system processor to download test sequencing instructions
and to perform memory diagnostics.

PLO Interface

The PLO interface allows the system processor to control the frequency of
the internal PLO oscillator.

Input Buffer Thresholds

The front panel external clock, gate and trigger inputs have programmable
input thresholds that are adjustable over a range of ± 4.99 Volts. These
are high impedance inputs greater than 1 megohm.

SR2510 User's Manual 2-3

Rev. 05Interface Technology

Chapter 2: Theory of Operation

Fi
gu

re
 2

-2
.

SR
25

10
 T

im
in

g
/ C

on
tro

l B
oa

rd
Bl

oc
k

D
ia

gr
am

.

SR2510 User's Manual

Interface Technology

2-4 Chapter 2: Theory of Operation

Rev. 05

The SR2510 Timing/Control board uses an Interface Technology
IT9010M interface chip to implement the VXI message-based
interface and includes bus master, A32/D32 and A32/D16 support.
The IT9010M provides all of the low level data transfer signals
and protocols, as well as the VXI registers needed for a message-
based device. In addition, the IT9010M supports A32 memory
access and bus master. The A32 address space can be accessed
from either the VXI bus or the 68EC030 processor with all
arbitration provided on the IT9010M chip.

Bus master arbitration is also built into the IT9010M. When in
the bus master mode, the IT9010M provides a transparent data
path from the 68EC030 to the VXI bus. When a command is
received by the SR2510 that requires communication with a
SR2520 expansion module, the 68EC030, through the IT9010M,
requests to become the VXI bus master. When bus mastership is
granted, the 68EC030 carries out the requested operation directly
with the register-based module without further assistance from the
slot-0 controller, again, through the IT9010M. When the opera-
tion is complete, the VXI bus is released and the operational
status message is updated. This process can be quite lengthy with
some operations, so care must be taken that a VXI bus transfer not
be initiated by the slot-0 controller without reasonable assurances
that the bus will be available. Otherwise, a VXI bus time-out
error can occur.

A 1MB block of RAM is mapped to the VME A32 address space
and is accessible by either the slot-0 controller or by the 68EC030.
The A32 memory is optional and provides high-speed, binary
block transfers to and from the SR2500 subsystem. Two types of
transfers are supported with the A32 memory option. In the first
type of binary transfer, individual stimulus, response, and record
memories on the SR2500 I/O boards may be loaded or queried
directly with binary data, rather than loading the memories with
ASCII text strings. Since the data is binary, no parsing or conver-
sion of the data from ASCII to binary is necessary. Hence,
transfer speeds are increased by several orders of magnitude.

The A32 memory may also be used to "learn" the state of the
SR2500 subsystem in the form of a binary memory image. Indi-
vidual tests, or the entire SR2500 subsystem configuration, may
be learned with a single command. Data is transferred in binary
blocks using a software protocol similar in concept, if not func-
tion, to the XON/XOFF protocol. These learned binary images
are the compiled equivalent of the SCPI text commands. A
learned setup can be sent back to the SR2500 subsystem, resulting

IT9010M VXI Interface

VME A32 Memory

SR2510 User's Manual 2-5

Rev. 05Interface Technology

Chapter 2: Theory of Operation

in a configuration exactly the same as when the setup was learned. How-
ever, since the binary data represents the already compiled SCPI com-
mands, no additional parsing or interpretation takes place. This provides
two advantages: 1) The binary image of the complete setup can be loaded
at a much faster rate than the high-level ASCII text-based word serial
commands; 2) Because the setup and data is in binary format, the test file
cannot be modified or viewed, thus adding a measure of security.

The SR2500 system clock is provided by a 100 MHz to 200 MHz PLL
stabilized ECL Phase Locked Oscillator (PLO). This PLO is phase locked
to a 10 MHz reference and provides the basic timing for all SR2500 tests.
The PLO output is divided by eight within the control processor and then
distributed throughout the system in eight phases. Thus, the distributed
system clock actually operates between 12.5 MHz and 25.0 MHz, inclu-
sive. Logic is provided in the stimulus and response processors located on
the I/O boards, which can divide this system clock by an integer in the
range of 1 to 65,535 to produce the test clock (cycle clock). In theory, the
lowest internal clock rate is 190.74 Hz. However, the actual clock rate is
software-limited to 200 Hz.

Frequency Resolution

The resolution of the PLL is 10.0 kHz over the range of 100 MHz to 200
MHz. The PLO output is fed into the control processor where it is divided
by four, resulting in a system clock that is programmable in the range of
12.5 MHz to 25.0 MHz, with a 1.25 kHz resolution. Any test operating in
the 12.5 MHz to 25.0 MHz range will have a clock resolution of 2.50 kHz.
For test frequencies below 12.5 MHz, the system clock is divide by an
integer in the range of 2 - 65,535. This results in the resolution also being
divided by 2 - 65,535. The following algorithm is used within the SR2510
to alculate the correct PLL and divisor values. The F

DESIRED
 parameter is

the desired frequency entered by the user. SYSTEM CLOCK is the clock
distributed to all I/O boards, and the actual test vector frequency is
SYSTEM CLOCK divided by DIVIDE. In the case where F

DESIRED
 is in

the range of 12.5 MHz and 25 MHz, the system clock and the test vector
frequencies are the same. Test clock resolution is 1.25 kHz divided by
DIVIDE.

FREQ = (Unsigned Long Integer)(F
DESIRED

 + .5)

DIVIDE = (Long Integer)(24999999.99 / (Double Precision) FREQ + 1

SYSTEM CLOCK = (Double Precision)(FREQ x DIVIDE)

PLO CLOCK = SYSTEM CLOCK x 8

Phase Locked Oscillator (PLO)

SR2510 User's Manual

Interface Technology

2-6 Chapter 2: Theory of Operation

Rev. 05

Frequency Accuracy

The absolute frequency accuracy is dependent on the 10 MHz PLO
reference source. The internal reference is accurate to ± 300 ppm with
less than 100 ps of short term rms jitter. If the VXI reference clock
(CLK10) or the front panel 10 MHz reference clock is used, the system
assumes the long term accuracy of that reference source. The supplied
PLO reference clock source must be a stable and continuous waveform.
The maximum frequency deviation, relative to 10 MHz, must not exceed
1.0%. The maximum short term, rms input jitter must not exceed 200 ps,
while the SR2500 rms output jitter will not exceed (reference clock source
jitter + 100 ps.)

The control gate array contains a high-speed sequencer state machine,
called the control processor, that controls global generation of stimulus
and response test vectors, see Figure 1-5. The control gate array also
contains another independent state machine, called the record state
machine, which controls the recording of response input data or error
vectors, and signature analysis CRC checksums. The control gate array
generates certain control signals and clocks that keep the stimulus and
response gate arrays on the I/O boards in sync with the system. In addi-
tion, the control gate array processes, in real-time, control inputs and
clocks that are generated by both the I/O boards and external hardware.
These inputs are used in real-time decision based looping and branching
and by the record state machine for data recording and CRC sampling.

Control Processor

See Fig 2-3. The control processor controls the generation of test vectors
by executing a program out of the control memory. Instructions for this
program are called CMACRO's (Command Macros). The address used to
fetch data out of the stimulus and response memories is effectively locked
to the same address used to fetch the CMACRO instructions. For ex-
ample, if the CMACRO program causes a word loop at vector number 27
for ten test cycles, then stimulus vector 27 is output for ten cycles and the
incoming data is compared against the data stored at response vector 27
for ten cycles also.

The 68EC030 system processor automatically generates a simple default
CMACRO program containing a series of output (do not loop, do not
branch) instructions, which is sufficient if a simple RAM-backed, non-
algorithmic test is desired. The user may download instructions that cause
more complex operations to occur. These instructions have two main
purposes:

1. To synchronize the test pattern generation with an external event or
condition within the UUT.

2. To assist in the generation of algorithmically defined test pattern

Control Gate Array

SR2510 User's Manual 2-7

Rev. 05Interface Technology

Chapter 2: Theory of Operation

sequences that are much longer than would normally be possible with
available test memory. These test pattern sequences are typically used
to test structured devices, such as a RAM or microprocessor based
device.

The control processor obtains its CMACRO instructions from a 32K x 56
bit memory block called the control memory. To achieve the maximum
speed (25 MHz) with less expensive memory chips, two vectors are
fetched for each memory access. The use of an internal cache controller
makes this process transparent to the user. The cache controller is also
used to make certain that hardware loops are seamless, meaning no extra
time is required when jumping from the bottom of a loop to the top, or
when exiting the bottom of the loop. Seamless loops are useful when
generating long test sequences without gaps or splices.

The control processor is actually capable of addressing 1M word of
memory (2M vectors); however, current memory technology and packag-
ing constraints limit the practical memory size to 128K words (256K
vectors).

The control memory is logically divided into a 12 bit instruction field and
a 16 bit literal field. The instruction field specifies the control processor
operation to take place, while the literal field contains information used by
the instruction. For example, if the instruction is a jump command, the
literal field specifies the address.

Control Processor Instructions. The control processor can execute the
following CMACRO instructions:

Output (OUTput):

The OUTput instruction causes the control processor to step to the next
sequential vector at the end of its test cycle. All control memory locations
are automatically filled with this instruction by the system processor when
a test is initially defined. This instruction requires one clock cycle to
execute.

Start Program/End Program (SProgram and EProgram):

The SProgram and EProgram instructions delimit the beginning and end
of a test program. Only one SProgram instruction is permitted per test,
and must be the first instruction in the test, i.e., at vector number one.
Any number of EProgram instructions are allowed in a test. Each instruc-
tion requires one clock period to execute.

Start Loop Until/End Loop (SLoopuntil and ELoop):

The SLoopuntil and ELoop instructions mark the range (beginning and
end) of a multiple vector loop, respectively. Loop branching is seamless.

SR2510 User's Manual

Interface Technology

2-8 Chapter 2: Theory of Operation

Rev. 05

Each instruction requires one clock period to execute under all conditions. Although the loop condition is
specified by the SLoopuntil instruction, it is not tested until the corresponding ELoop instruction is executed.
If the condition is true, the test falls through to the vector after the ELoop instruction. If the condition is false,
program execution loops back to vector where the SLoopuntil instruction is located, not to the vector follow-
ing SLoopuntil. As a result of the test being performed at the bottom of the loop, the code within a loop will
always be executed at least once. The conditions that may be specified by the SLoopuntil instruction are
discussed later. Start/end loops may be nested two levels deep. For start/end loops, the following rules apply:

Note
Failure to observe the following rules may lead to unpredictable results.

1. For every SLoopuntil instruction encountered, the control processor must encounter a corre-
sponding ELoop instruction. And for every ELoop instruction encountered, the control processor
must encounter a corresponding SLoopuntil instruction.

2. If a jump to subroutine instruction is executed inside a start/end loop, the program must eventu-
ally return before the ELoop instruction is executed.

3. If nesting start/end loops, both loops must be in a linear sequence of vectors. It is not permis-
sible to have the first level start/end loop in the main program sequence, and have the second
level start/end loop in a subroutine. Either both loops must be in the main program sequence, or
both loops must be in the subroutine.

Figure 2-3. Control Processor Gate Array Block Diagram.

SR2510 User's Manual 2-9

Rev. 05Interface Technology

Chapter 2: Theory of Operation

Word Loop Until (WLoopuntil):

The WLoopuntil instruction allows looping at a single vector until the defined condition is detected. If the
condition is true, program execution continues at the vector after the WLoopuntil instruction. If the condition
is false, program execution remains at the same vector where the Word Loop instruction is located. The
conditions that may be tested by the WLoopuntil instruction are discussed later. The WLoopuntil instruction
requires one clock period to execute under all conditions and the pattern looping is seamless.

Set Condition (SCONDition):

The conditional jump, conditional jump to subroutine and conditional return from subroutine instructions
require that the condition being evaluated be set with the SCONDition instruction prior to the evaluation.
Failure to do so may lead to unpredictable results. This instruction requires one clock period to execute. The
conditions that may be specified are discussed later.

Set Jump Page (SJMPPage):

If jumps are performed beyond the first 64K vectors, this instruction must be executed before the jump to
specify which of the 64K vector pages to jump to. The SJMPPage instruction uses the literal field to specify
the page address (0-31). This instruction requires one clock period to execute.

Unconditional/Conditional Jump (JMP and CJMP):

The JMP and CJMP instructions causes test execution to branch to the vector specified by a predefined label.
If the vector is not in the current 64K vector jump page (not currently possible), the SJMPPage instruction
must have previously been executed. If the jump is conditional, the SCONDition command must have
previously been executed. This instruction is not seamless and requires four clock cycles for a jump from an
odd vector, or five clock cycles for a jump from an even vector. If the CJMP is not taken, the instruction
requires one clock period to execute. The jump to address is held in the output and tristate memories (for
stimulus) and expect and "don't care" memories (for response), so during the jump process, the output pins
and the expected response patterns are held with the state and tristate condition from the previous vector.
During a jump, pin formatting remains active, optionally, so a pin using a return-to-zero format to generate a
clock would remain active during the jump. This would be the same as having an algorithmic HOLD DATA
command.

Unconditional/Conditional Jump Subroutine (JSRoutine and CJSRoutine):

The JSRoutine and CJSRoutine instructions causes test execution to branch to the vector specified by a
predefined label. The JSRoutine vector must be located on a (32 +1) vector boundary. With a conditional
jump, the Set Condition command must have previously been executed. The "jump-to" address is held in the
output and tristate memories (for stimulus) and expect and "don't care" memories (for response), so during
the jump process, the output pins and the expected response patterns are held with the state from the previous
vector. During a jump, pin formatting remains active, optionally, so a pin using a return-to-zero format to
generate a clock would remain active during the jump. This functions the same as having an algorithmic
HOLD DATA command.

Jump-to-subroutine instructions require 4 cycles to execute if the jump is taken. If the conditional jump is
not taken, the instruction requires one cycle to execute. Jump to subroutine instructions may be nested up to
eight levels, meaning that eight jump-to-subroutines may be taken before a return-from subroutine must be

SR2510 User's Manual

Interface Technology

2-10 Chapter 2: Theory of Operation

Rev. 05

performed. All jump-to subroutines must have a matching return-from
subroutine and all subroutines must be completed before the end program
instruction is executed or unpredictable conditions may result. No stack
overflow or underflow trapping exists.

Unconditional/Conditional Return Subroutine (RTSubroutine and
CRTSubroutine):

The RTSubroutine and CRTSubroutine instruction cause the address on
top of the stack to be popped and program execution to resume at the
vector after the calling jump-to subroutine. If the return-from subroutine
is conditional (CRTSubroutine), the SCONDition command must have
previously been executed. This instruction is not seamless. It requires
three clock periods for a return from an odd address and four clock
periods for a return from an even address. If the conditional return is not
taken, the instruction requires one clock period to execute. During a
return, pin formatting remains active, optionally, so a pin using a return-
to-zero format to generate a clock would remain active during the jump.
This functions the same as having an algorithmic HOLD DATA command.

Clear Error Latch (CLEARError):

The CLEARError instruction causes the response compare error latch to
be reset. The state of the response compare signal is continuously moni-
tored . If in any cycle the response input vector does not match the expect
vector for bit locations where the "don’t care" bit is "0", the response
compare error latch is set and remains set until the CLEARError
CMACRO is executed. This instruction requires one clock period to
execute. If the response compare error condition is still present while this
instruction is executed, the latch is set again during the next clock period.
The state of this latch is a control processor test condition, discussed
below, and can be queried by the system processor.

The control processor can execute several conditional instructions. These
instructions are used to modify CMACRO program sequencing, in real-
time, by performing tests on the following internal and external condi-
tions.

Count (COUNt == (1 - 65535)):

This condition evaluates true after the loop has been executed the defined
number of times. The loop value can range from 1 to 65,535. This
condition can be used with the start/end loop and the word loop com-
mands, but not with the set condition command, which implies that it may
not be used with the conditional jump, conditional gosub or the condi-
tional return from subroutine.

Response Compares (RCOMpare == TRUE):

Note

As a by-product of initiating (start-
ing) a test, the response compare
pipeline is filled with error condi-
tions, and the error latch is set,
indicating an error. To use the
error latch in a test, the response
compare pipeline must be flushed
and the error latch reset. This can
be done by defining a vector with
the value of all "don't care" bits set
to "1", then loop on that vector for
at least 10 cycles. After the loop,
the CLEARError instruction must
be executed. If this procedure is
not followed, the error latch will
always indicate that a response
compare error has occurred.

Note

Conditions being evaluated for
looping and conditional jumping
require a 3 cycle + 60 ns setup
time. If the "true condition" does
not meet the evaluation setup
time, the loop will not be exited or
the conditional jump will not be
taken.

SR2510 User's Manual 2-11

Rev. 05Interface Technology

Chapter 2: Theory of Operation

The response compare condition is true when all response input bits match
the corresponding expect bit, where the corresponding "don’t care" bit
contains a value of "0". Response compare is a dynamic indication of the
results of the input data being compared to the expected response pattern
for the current vector only, unlike the error latch.

Response Does Not Compare (RCOMpare != TRUE):

The response does not compare condition is true when any of the input
bits do not match the corresponding expect bit, where the corresponding
"don’t care" bit contains a value of "0". Response does not compare is a
dynamic indication of the results of the input data being compared to the
expected response pattern for the current vector only, unlike the error
latch.

Error Latch Set (LATCherror == TRUE):

The error latch set condition is true if the response compare error latch is
set. The response compare error latch is set whenever a response does not
compare condition occurs, and will remain set until cleared by the
CLEARError instruction.

Error Latch Not Set (LATCherror != TRUE):

The error latch not set condition is true if the response compare error latch
is not set. The response compare error latch is set whenever a response
does not compare condition occurs, and will remain set until cleared by
the CLEARError instruction. This instruction may be used with the set
condition CMACRO only. It is not an option for word loops or start/end
loops.

System Trigger Has Occurred (STRIgger == TRUE):

This condition is true when the currently selected system trigger event
occurs. The trigger may be defined as the IEEE 488.2 *TRG command, a
word serial trigger, both of which use the bus trigger source, one of the
VXI bus TTL triggers (TTLTRG0-7) or the front panel trigger input. The
polarity of the VXI bus TTL trigger and the front panel trigger is normally
set to the rising edge, but may be inverted to trigger on the falling edge.
The front panel trigger input uses a comparator with a programmable
threshold that may be adjustable between ± 5.00 volts. This condition
may be used with the start/end loop and the word loop commands, but
may not be used with the set condition command.

Input Flag Match (FRONtpannel && (#h00-#hFF with X's)):

This command provides a match evaluation of the 8 SR2510 TTL front
panel input flags against the 8 bit match pattern. The match pattern is

SR2510 User's Manual

Interface Technology

2-12 Chapter 2: Theory of Operation

Rev. 05

represented as either a hex (#h) or binary (#b) value, which includes X's to
denote masked inputs. If the match pattern is represented in hex, then an
X will mask out the four corresponding input flags. The condition is true
if any of the enabled front panel input flags match the corresponding
compare bit. If a match bit is defined as X, then the corresponding input
flag is ignored (false). If all bits are X, then evaluation is always false.

Input Flag Does Not Match (FRONtpanel &! (#h00-#hFF with X's)):

As the inverse of the input flags pattern match, the input flag pattern
mismatch condition is true if all of the enabled front panel TTL input flags
do not match the compare bits. The match pattern is represented as either
a hex (#h) or binary (#b) value, which includes X's to denote masked
inputs. If the match pattern is represented in hex, then an X will mask out
the 4 corresponding input flags. This instruction will always evaluate to
true if the match pattern is set to all X's.

Qualifier Match (QUALifword && (#h00-#hFF)):

The SR2500 supports eight system-wide response input comparators
called qualifiers (0-7). Each qualifier can be programmed to compare
each bit in a expect type field against a "1", "0" or "don't care" value. A
qualifier is true if all enabled bits match the input pattern. For example a
value of #b00000001 enables qualifier 1 only. A value of #b00000011 or
#b00000010 enables qualifiers 1 and 2 or qualifier 2 only, respectively.
The condition is true if any of the enabled qualifiers match the pattern on
the input pins.

Qualifier Does Not Match (QUALifword &! (#h00 - #hFF)):

As the inverse of the qualifier match condition, this condition is true if
none of the enabled qualifiers match the pattern on the input pins. For
example a value of #b10000000 enables qualifier 8 only. A value of
#b00100100 or #b00010000 enables qualifiers 3 and 6 or qualifier 5 only,
respectively.

Record State Machine

See Fig 2-3. The record state machine provides triggering and storing
capabilities similar to that of a logic analyzer. The machine contains 16
states or trigger levels, called trace sequences. When a test is started, the
record state machine is always initialized to start at trace sequence 1. As
the test proceeds, the machine may advance down through the trace levels,
or branch out of sequence to different trace sequence levels. At each
sequence, controls exist for defining the record systems operation. These
operations are divided into the following functional areas:

Filter:

SR2510 User's Manual 2-13

Rev. 05Interface Technology

Chapter 2: Theory of Operation

The filter parameter determines the data to be stored in the record
memory. The choices are:

• Record the response input data directly from the input pins. This is
the default condition.

• Record an error vector in which a bit is set for every input bit that
does not match the corresponding expect bit as long the corresponding
"don’t care" bit is "0". If the bit does match or the "don't care" bit is
"1", a "0" is stored.

Record:

As a subset of the filter parameter, there is another parameter that allows
you to define when the filtered data is recorded to memory. The follow-
ing conditions may be selected:

• NEVER: Never store to record memory.
• ALWAYS: Store data on each test cycle (default).
• COMPARE: Store data only if response compares for the current

expected response vector.
• NCOMPARE: Store data only if response does not compare for the

current expected response vector.
• QCOMx: Store data if one or more of the selected input qualifier

combinations are true.

CRC:

The CRC parameter determines under which conditions to enable calcula-
tion of the signature analysis (CRC). Even when enabled, the CRC
calculation is not performed on individual inputs with the "don't care" bit
set. The following conditions may be selected:

• NEVER: Never calculate a checksum.
• ALWAYS: Calculate a checksum on each test cycle (default).
• COMPARE: Calculate a checksum only if response compares for

the current expected response vector.
• NCOMPARE: Calculate a checksum only if response does not

compare for the current expected response vector.
• QCOMx: Calculate a checksum if one or more of the selected input

qualifier combinations are true.

Advance Sequence:

The advance sequence parameter determines the conditions under which
the state machine advances from the current trace level to the next trace
level. This area is normally used to qualify the input data or advance to a
higher trigger state. The next level is the next higher trace sequence
number. If both the advance sequence and the jump sequence parameters

SR2510 User's Manual

Interface Technology

2-14 Chapter 2: Theory of Operation

Rev. 05

are used, and if both evaluate true on the same test cycle, then the jump
takes priority. The following conditions may be selected for trace se-
quence advancement:

• NEVER: Never advance. This is the default condition.
• CLOCK: Advance after a specified number of test cycles.
• COMPARE: Advance after a specified number of response com-

pares.
• NCOMPARE: Advance after a specified number of response does

not compare.
• QCOMx: Advance after a specified number of one or more of the

selected input qualifier combinations are true.

The advance trace sequence parameter contains a delay counter that may
be used to specify the number of times a condition must occur before
advancing. The range of this counter is 1 to 65,536 and, by default, is set
to 1.

Jump To Sequence:

The jump-to-sequence parameter determines the conditions under which
the state machine jumps out of sequence to a new trace level. This section
is normally used to disqualify input data and return to a previous or lower
trigger state. If both the advance sequence and the jump sequence param-
eters are used, and if both evaluate true on the same cycle, the jump
sequence takes priority. The following conditions may be selected for
jumping to a new trace sequence level:

• NEVER: Never Jump. This is the default condition.
• COMPARE: Jump if response compares.
• NCOMPARE: Jump if response does not compare.
• QCOMx: Jump if one or more of the selected input qualifier combi-

nations are true.

Stop:

Normally the control processor stops test execution on its own when the
program loop has executed the test the specified number of times. How-
ever, the stop flag may be set on a given trace sequence so the system is
signaled to stop when that sequence is reached. This function sets a flag
that is polled by the system processor, which then arbitrarily aborts test
execution. Since this is a software procedure, the time the system proces-
sor requires to poll and detect the stop flag and then abort the test is
unpredictable. Therefore, this function cannot be used as a breakpoint.
The control processor is not left in any known state after the abort proce-
dure and cannot be restarted without being re-initialized. Regardless of

SR2510 User's Manual 2-15

Rev. 05Interface Technology

Chapter 2: Theory of Operation

how the test stops, the user may then query the system to return the recorded data and/or CRC checksums.

The record state machine operates independently of the rest of the system, and contains its own address
counter. The number of vectors stored in record memory may not match the number of vectors in the test
program.

I/O Board

(Fig 2-4) The I/O board contains the stimulus, response and record logic for 32 channels of output and 32
channels input. Figure 2-4 shows the main components and data paths of this board. The I/O boards installed
in the SR2510 module are addressed from the 68030 microprocessor while the I/O boards installed in the
SR2520 modules are addressed from the VXI bus as a register-based instrument, (see SR2520 User's Manual
for discussion of SR2520 principles of operation).

Figure 2-4.
SR2510 I/O Board Block Diagram.

SR2510 User's Manual

Interface Technology

2-16 Chapter 2: Theory of Operation

Rev. 05

Stimulus and Response Memory

(Fig 2-4) The stimulus and response memory blocks contain data needed
to generate the stimulus and expect response data patterns, respectively.
The VXI bus can read and write this memory when the control processor is
not running. When the control processor is running, access to the VXI bus
is blocked and the stimulus and response gate arrays have exclusive read-
only access to the memory. The address counters regenerate the control
processor address on each stimulus gate array and are used to drive the
memory for the pair of stimulus and response gate arrays. Each I/O board
contains four of these address buses. However, the buses are effectively
locked together with the control processor's address counter.

Record Memory

(Fig 2-4) The record memory stores the data returned by the UUT, or the
results of the data returned by the UUT and compared to the data provided
by the expected response pattern generator. This is a read only memory
for the user and can be read only when the control processor is not run-
ning. When the control processor is running, access to the memory by the
user is blocked and the response gate arrays have exclusive write-only
access to the memory. The record address counters are generated on each
response gate array and are effectively locked together. The record
address counter is independent of the control processor’s address counter,
which controls stimulus and response vector sequencing.

Delayed Clock Generators

As discussed previously, the SR2510 Timing/Control board provides a
eight phase system clock, which is distributed throughout the SR2500
subsystem. The actual test vector rate is the system clock divided by an
integer in the range of 1 to 65,535. These system clock cycles and phases
are available to the stimulus logic to use for the data format delay and
width parameters, and they are also available to the response logic to
define the edge and window sample timing parameters.

In each stimulus gate array, logic is provided so the output pins, individu-
ally or in groups, may select any phase and any cycle of the system clock
to assert the output when the NRZ data formatting mode is used. The
assert time is synonymous with format delay. Additional logic is provided
so that the output pins may select any other phase of any other cycle of the
system clock to define the de-assert (deny) times for the return-to data
formatting modes. The de-assert time is synonymous with format width.

For example, if the test rate is defined at 25.0 MHz, there is a single
system clock for each test vector cycle. Therefore, there are eight phases
(points, times) that are available for use with data formatting. The 40 ns
test cycle period, divided by the eight available phases, yields an edge
placement resolution of 5 ns. If the test rate is defined as 10 MHz, the

SR2510 User's Manual 2-17

Rev. 05Interface Technology

Chapter 2: Theory of Operation

system clock is set to 20 MHz, then divided by two. This means there are
two system clocks for each test vector cycle. Therefore, there are 16
phases (points, times) that are available for use with data formatting. The
100 ns cycle period, divided by the 16 available phases, yields an edge
placement resolution of 6.25 ns. Edge placement resolution will always
fall within the range of 5-10 ns, regardless of the defined test rate.

The response gate arrays provide similar capabilities for use with edge and
window sample modes. Each response input pin can use one system clock
phase/cycle for the edge sample mode, or two system clock phase/cycles
in the window mode.

Stimulus Gate Arrays

(Fig 2-5). The stimulus gate arrays, in conjunction with the stimulus
memories (output, tristate and algorithmic command) form the heart of the
SR2500 stimulus pattern generator. Each gate array is an 8 bit wide, high-
speed pattern generator and data formatter. Pattern generation is accom-
plished by outputting the contents of the stimulus RAM directly or by
algorithmically generating the data within the gate array using a high-
speed ALU state machine. Some gate arrays may be programmed for
RAM-backed pattern generation, while other gate arrays on the same card
may be programmed for algorithmic pattern generation. While any gate
array supports only one type of pattern generation during any test run, one
of the algorithmic commands instructs the ALU state machine to pass data
directly from RAM to the outputs. This allows mixing of algorithmic and
RAM-backed pattern generation on the same pins.

Algorithmic Stimulus Pattern Generator

The pattern generator within the stimulus gate array is a high-speed
programmable state machine. Instructions for this state machine are
stored in the stimulus algorithmic command memory and instruct the gate
array on a test clock-by-clock basis to either load the ALU output register
from RAM or to algorithmically modify the contents of the ALU register.
The output memory holds the clock-by-clock state of the output pins. The
tristate memory holds the clock-by-clock state of the output enable, which
allows a pin to be driven by the output memory on one clock cycle and
tristated on the next clock cycle, thus achieving a bi-directional pin. In
algorithmic mode, data patterns are defined by applying an algorithmic
function to the internal ALU register. Multiple stimulus gate arrays may
be cascaded together to create 16, 24 or 32 bit wide algorithmic patterns.

Stimulus Output Pin Formatter

Each output channel contains a pin formatter that provides the following
data formats: Non Return-to-Zero (NRZ), Return-to-Zero (RZ), Return to
One (R1), Return-to-Compliment (RC), and Return-to-Inhibit (RI). The

SR2510 User's Manual

Interface Technology

2-18 Chapter 2: Theory of Operation

Rev. 05

Figure 2-5.
Stimulus Gate Array Block Diagram.

pin formatter section of each gate array can access the available system clock cycle/phase combinations,
described in the section on Delayed Clock Generators, to define the assert and deny times for the output
channels data format.

Response Gate Arrays

(Fig 2-6). The response gate arrays, in conjunction with the response memories (expect, "don't care" and
algorithmic command) form the heart of the SR2500 expected response pattern generator, used in real-time
compare operations. Each gate array is an 8 bit wide, high-speed pattern generator. Pattern generation is
accomplished by outputting the contents of the RAM directly or by algorithmically generating the data within
the gate array using a high-speed ALU state machine. Some gate arrays may be programmed for RAM-
backed pattern generation, while other gate arrays on the same card may be programmed for algorithmic
pattern generation. While any gate array supports only one type of pattern generation during any test run, one
of the algorithmic commands instructs the ALU state machine to pass data directly from RAM to the outputs.
This effectively allows mixing of algorithmic and RAM-backed pattern generation on the same pins.

SR2510 User's Manual 2-19

Rev. 05Interface Technology

Chapter 2: Theory of Operation

Expected Response Pattern Generator

The expected pattern generator within the response gate array is a high-speed, programmable state machine.
Instructions for this state machine are stored in the response algorithmic command memory and instruct the
gate array on a test clock-by-clock basis to either load the ALU output register from RAM or to
algorithmically modify the contents of the ALU register. The expect memory holds the clock-by-clock state
of the expected response pattern. The "don't care" memory holds the clock-by-clock state of the compare
enable, which allows a pin to be disabled for compare on one clock cycle and enabled for compare on the
next clock cycle. In algorithmic mode, data patterns are defined by applying an algorithmic function to the
internal ALU register. Multiple gate arrays may be cascaded together to create 16, 24 or 32 bit wide algorith-
mic patterns.

Figure 2-6.
Response Gate Array

SR2510 User's Manual

Interface Technology

2-20 Chapter 2: Theory of Operation

Rev. 05

Response Input Formatter

The response input formatter latches the response data from the UUT and
passes it on to the response compare logic and the record control logic.

The pin formatter section of each gate array can access the available
system clock cycle/phase combinations, which are used to define the edge
and window sample times. In the edge mode, data is sampled at the
selected system clock cycle/phase. In the window mode, data must be
stable from the time when the window is opened (the first selected system
clock cycle/phase combination), to the time the window closes (the second
selected system clock cycle/phase combination). Window compare is
used for detecting signal glitches.

Response Comparator

The response Comparator logic compares the data latched by the input
formatter to the pattern generated by the response pattern generator, and
passes the result to the record control logic. A response compare signal is
generated for each test cycle, regardless of whether the real-time compare
mode is being used. These signals, one from each I/O board, are summed
on the SR2510 and used for generation of the error latch, and may also be
used for test sequence control decisions based on real-time compare
results.

Input Qualifier

The response gate arrays also contain 8 qualifier trigger registers and the
qualifier compare logic. All 8 qualifier triggers (qualifiers) are compared
to the latched input data that is passed from the input formatter on each
test cycle. The results of the qualifier compare are passed back to the
SR2510 module. The qualifier compare signals from each I/O board are
summed on the SR2510 and used by the record state machine to start and
stop data recording, provide filtered data recording, to start and stop CRC
sampling. These signals may also be used for test sequence control
decisions based on qualifier compare results.

Record Control

The record control logic in the response gate array provides two main
functions: to generate record memory addresses and to pass data to the
record memory for storing. This logic receives instructions from the
SR2510 record state machine, located in the control processor, which
determines when to record data and what data to record. After each
record operation the record memory address is incremented by one,
therefore, all data is recorded in a continuous, linear sequence. Since the
record memory is addressed separately from the stimulus and response
memories, there is no guarantee that the number of record vectors is the

SR2510 User's Manual 2-21

Rev. 05Interface Technology

Chapter 2: Theory of Operation

same as the number of stimulus and response vectors. Also, if record data
wrapping is enabled, and the number of vectors recorded exceeds the size
of the test, the oldest data in the record memory is overwritten. This will
continue until the test stops or is aborted. record memory is then rear-
ranged to provide a linear sequence of recorded data from oldest to most
recent, accessed from the first vector to the last vector, respectively.

Two types of data may be passed to the record control logic for recording;
the UUT response data latched by the input formatter, or the results of the
real-time comparison performed in the response comparator. The latter is
known as error data, or errors, and is represented as a 0 stored for each bit
where the compare matched, and a "1" stored for each bit where the
compare did not match. Selecting which data to record may be changed
from within the SR2500 test using control structures called trace se-
quences. As there are 16 levels of trace sequences, this start and stop
process of recording data may occur multiple times in a single test,
allowing invalid or inappropriate responses to be ignored. For additional
information about trace sequences, refer to the Record State Machine
section earlier in this chapter.

CRC Logic

Each input pin on the SR2500 I/O board has a 16 bit register and logic
used for calculating CRC signatures, all located within the response gate
arrays. CRC calculations are controlled from the same trace sequences as
are used to control data recording. Based on matching of a trigger condi-
tion, CRC calculations may either be enabled or disabled. As there are 16
levels of trace sequences, this start and stop process of calculating CRC
signatures may occur multiple times in a single test, allowing invalid or
inappropriate samples to be ignored. For additional information about
trace sequences, refer to the Record State Machine section earlier in this
chapter.

For the purpose of signature analysis, each input pin may be thought of as
a separate serial channel. So, each SR2500 I/O board has 32 independent
signature analysis channels. Enabling or disabling the CRC calculation is
performed globally within the SR2500 system using the trace sequences.
The "don't care" memory, which is used to enable individual bits for real-
time compare, is also used to dynamically enable or disable individual
CRC calculations. If CRC calculations are globally enabled, and the
individual CRC calculation is enabled ("don't care" bit set to "0"), a CRC
calculation is performed. If the individual CRC calculation is disabled
("don't care" memory set to "1"), the CRC calculation is disabled for that
channel at that test cycle. When the CRC calculation is enabled, the data
passed from the input formatter is used to update the value in the CRC
registers based on the CCITT standard communication polynomial used to
perform CRC calculations. When disabled, the data passed from the input

SR2510 User's Manual

Interface Technology

2-22 Chapter 2: Theory of Operation

Rev. 05

formatter is ignored by the calculation logic, i.e., no calculation takes
place. Data is passed to the CRC logic from the input formatter using the
same sample clocks used to record data, so timing for CRC samples is
identical to timing for record samples.

 Algorithmic Commands

The stimulus and response gate arrays each contain algorithmic pattern
generators that generate stimulus and response patterns, respectively. The
following list of algorithmic commands are common to both stimulus and
response pattern generation.

NONAlgorithmic

The Nonalgorithmic command allows the gate arrays to act as a pass
through for data from RAM to the output pins. The data that is passed
from RAM to output is also used to initialize the algorithmic register.
This register can be acted on by other algorithmic commands to modify
the data content programmatically after initialization.

INCrement

Increment the contents of the algorithmic register and pass the results to
the output pins. If algorithmic fields greater than 8 bits are used, multiple
gate arrays are interlinked. If an increment instruction causes an overflow,
the overflow is used as a carry input to the next most significant gate array
thus extending the count up to a maximum of 232 before roll over.

DECrement

Decrement the contents of the algorithmic register and pass the results to
the output pins. If algorithmic fields greater than 8 bits are used, multiple
gate arrays are interlinked. If a decrement instruction causes an under-
flow, the underflow is used as a borrow input from the next most signifi-
cant gate array thus extending the count up to a maximum of 232 before roll
over.

XOR

The XOR instruction will perform a bit-wise exclusive "ORing" of the
algorithmic register with the contents of RAM. In this case the RAM acts
as a modifier to the register and does not directly load it. In this way,
selective bits of the algorithmic register may be complemented before
passed to the output pins.

SLEFTZero

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
fill the LSB with "0" and pass the results to the output pins. If algorithmic

SR2510 User's Manual 2-23

Rev. 05Interface Technology

Chapter 2: Theory of Operation

fields greater than 8 bits are used, multiple gate arrays are interlinked. In
this case, the MSB output of a less significant gate array is used as a LSB
input to the next most significant gate array, thus extending the shift to a
maximum 32 bits.

SLEFTOne

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
fill the LSB with "1" and pass the results to the output pins. If algorithmic
fields greater than 8 bits are used, multiple gate arrays are interlinked. In
this case, the MSB output of a less significant gate array is used as a LSB
input to the next most significant gate array, thus extending the shift to a
maximum 32 bits.

SLEFTComplement

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
complement the LSB and pass the results to the output pins. If algorith-
mic fields greater than 8 bits are used, multiple gate arrays are interlinked.
In this case, the MSB output of a less significant gate array is used as a
LSB input to the next most significant gate array, thus extending the shift
to a maximum 32 bits.

RLEFT

Rotate the contents of the algorithmic register left (LSB to MSB) one bit,
wrap the MSB to the LSB and pass the results to the output pins. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the MSB output of a less significant gate array is
used as a LSB input to the next most significant gate array and the MSB
of the most significant gate array is wrapped to the LSB of the least
significant gate array, thus extending the rotate to a maximum 32 bits.

SRIGHTZero

Shift the contents of the algorithmic register right (MSB to LSB) one bit,
fill the MSB with "0" and pass the results to the output pins. If algorith-
mic fields greater than 8 bits are used, multiple gate arrays are interlinked.
In this case, the LSB output of a more significant gate array is used as a
MSB input to the next least significant gate array and the LSB of the least
significant gate array is wrapped to the MSB of the most significant gate
array, thus extending the rotate to a maximum 32 bits.

The SR2510 I/O Boards have separate I/O pattern generator boards and
driver/receiver boards (D/R boards). Each I/O board provides two con-
nectors of 16 stimulus channels and 16 response channels for connecting
to the D/R boards. This means that each I/O board can support two logic
families, in groups of 16 channels each. The D/R boards come in four

Driver/Receiver Board

SR2510 User's Manual

Interface Technology

2-24 Chapter 2: Theory of Operation

Rev. 05

different logic types, allowing the user to configure the SR2500 modules
with the specific logic families required for the test system. On the
stimulus side, the I/O pattern generator boards provide discrete TTL I/O
signals to D/R boards, and the D/R boards translate the TTL I/O signals to
the appropriate logic levels. For receiving, the D/R board accepts the
UUT response and translates the UUT logic level to the TTL level re-
quired by the I/O board.

TTL Driver/Receiver Logic

(Fig 2-7) The TTL D/R board provides 16 channels of single ended TTL
to/from the UUT. Separate output and input pins are used (32 signal pins),
with a ground return for each signal. Bi-directional signals are supported
by connecting the output and input pins together. Each TTL driver
(74F125) has a 100 ohm resistor in series with the output. This provides
100 ohm back matched termination as well as additional short circuit and
over voltage protection. The receiver (74ACT244) provides 10k pull up/
down resistors on it's input.

CMOS Driver/Receiver Logic

(Fig 2-8) The CMOS D/R board provides 16 channels of single ended
CMOS to/from the UUT. Separate output and input pins are used (32
signal pins), with a ground return for each signal. Bi-directional signals
are supported by connecting the output and input pins together. Each
CMOS driver (74ACT125) has a 100 ohm resistor in series with the
output. This provides 100 ohm back matched termination as well as
additional short circuit and over voltage protection. The receiver
(74ACT244) provides 10k pull up/down resistors on it's input.

Differential TTL Driver/Receiver Logic

(Fig 2-9) The Differential TTL D/R board provides 16 channels of
differential TTL to/from the UUT. Separate output and input pins are
used (32 signal pins). Bi-directional signals are not supported directly on
the D/R board, however, 16 tristate control signals are also brought out the
differential TTL D/R board. These signals may be used on the UUT, or in
a UUT adapter, to provide bi-directional control.

Differential ECL Driver/Receiver Logic

(Fig 2-10) The Differential ECL D/R board provides 16 channels of
differential ECL to/from the UUT. Separate output and input pins are
used (32 signal pins). Bi-directional signals are not supported directly on
the D/R board, however, 16 tristate control signals are also brought out the
differential ECL D/R board. These signals may be used on the UUT, or in
a UUT adapter, to provide bi-directional control. Each side of the receiver
input (100325) provides 50 ohm resistors terminated to -2.0V.

Change 2

SR2510 User's Manual 2-25

Rev. 05Interface Technology

Chapter 2: Theory of Operation

Programmable Driver / Receiver Logic

(Fig 2-11) The programmable, (variable voltage) D/R board (VV D/R) provides 32 bi-directional channels of
I/O where the V

OH
 and V

OL
 levels are programmable over a range of -3V to +7V, and the V

TH
 and V

TL
 levels

are programmable over a range of -2.9 to +5.5V. The V
OH

, V
OL

, V
TH

 and V
TL

 voltages are supplied external to
the VV D/R board. Unlike the fixed level D/R boards, the VV D/R does not provide separate output and
input pins. All pins are bi-directional signals with a ground return for each signal. The driver (EDGE649) is
source terminated with a 50 ohm series resistor, and the receiver (EDGE649) provides a 50 ohm damping
resistor in series with its input. The receiver is a dual-threshold part, capable of differentiating between a
high input level, a low input level and an indeterminate (tristated) input. Additional logic in the form of a
multiplexer and a oscillator are added to the output of each input receiver to allow the SR2500 VV D/R to
detect/record if the response was valid or invalid. The truth table in Fig 2-10 indicates the various states that
can be detected. If the detected state is other than the state that is tested for, the comparison will fail, the error
latch will be set, and the record memory will store a "1" for each enable input bit that failed the test. The
states that can be tested are a valid high and a valid low.

Figure 2-7. TTL Single Ended Driver/Receiver,
(16 per D/R Board).

Figure 2-8. CMOS Single Ended Driver/Receiver,
(16 per D/R Board).

Change 9

Figure 2-9. Differential TTL Driver/Receiver,
(16 per D/R Board).

�&���,�

)%-��%�
&�����	�-.	�%�/

��	����	�0,�
�&���,�

����
11)	����%
��

	

)��0&���	���

��

��

Output Enables Are In Groups of Four

Tri-state bit 0
Tri-state bit 4
Tri-state bit 8
Tri-state bit 12
Tri-state bit 16
Tri-state bit 20
Tri-state bit 24
Tri-state bit 28

enables
enables
enables
enables
enables
enables
enables
enables

bits 0-3
bits 4-7
bits 8-11
bits 12-15
bits 16-19
bits 20-23
bits 24-27
bits 28-31

������
��� ���

)������

����

����

;�.

11)	����%
��

)%-��%�
&�����	�-.	�%�/

��������

��������
��� ���

)������

����

����

;�.

11)	����%
��

)%-��%�
&�����	�-.	�%�/

��������

SR2510 User's Manual

Interface Technology

2-26 Chapter 2: Theory of Operation

Rev. 05

Figure 2-10.
Differential ECL Driver/Receiver,

(16 per D/R Board).

Figure 2-11.
Programmable Driver/Receiver,

 (32 per D/R Board).

)������
������

)%-��%�
&�����	�-.	�%�/

��
������

���
���

������
11)	����%
��

1�.

" � 2

�
�
�
�

�
�
�
�

3%#
4�5'
�
/������
��
�
+ �/

���

./�

.��

"

�

./�� .���

./�� .���

��

)������

"-�

"

�

��

-��

2

"

�

11)	����%
��

)%-��%�
&�����	�-.	�%�/

������

Change 4

Figure 2-12. LVDS Driver/Receiver,
(16 per D/R Board).

Output Enables Are In Groups of Four

Tri-state bit 0
Tri-state bit 4
Tri-state bit 8
Tri-state bit 12
Tri-state bit 16
Tri-state bit 20
Tri-state bit 24
Tri-state bit 28

enables
enables
enables
enables
enables
enables
enables
enables

bits 0-3
bits 4-7
bits 8-11
bits 12-15
bits 16-19
bits 20-23
bits 24-27
bits 28-31

LVDS Driver/Receiver Logic

(Fig 2-12) The LVDS TTL D/R board provides
16 channels of LVDS to/from the UUT. Sepa-
rate output and input pins are used (32 signal
pins). Bi-directional signals are not supported
directly on the D/R board, however, 16 tristate
control signals are also brought out the LVDS
D/R board. These signals may be used on the
UUT, or in a UUT adapter, to provide bi-
directional control.

��!�,�

)%-��%�
&�����	�-.	�%�/

��	����	�0,�
��!�,�

����
11)	����%
��

	

)��0&���	���

��

��

SR2510 User's Manual 2-27

Rev. 05Interface Technology

Chapter 2: Theory of Operation

Figure 2-13. 3.3V Single Ended Driver/Receiver,
(16 per D/R Board).

���.����
��� ���

)������

����

11)	����%
��

)%-��%�
&�����	�-.	�%�/

��������

3.3 Volt Driver/Receiver Logic

(Fig 2-13) The 3.3V D/R board provides 16 channels
of single ended logic to/from the UUT. Separate
output and input pins are used (32 signal pins), with a
ground return for each signal. Bi-directional signals
are supported by connecting the output and input pins
together. Each 3.3V driver (74LVT125) has a 100
ohm resistor in series with the output. This provides
100 ohm back matched termination as well as addi-
tional short circuit and over voltage protection. The
receiver (74ACT244) has 10k pull down resistors on
it's input. Both the drivers and receivers are 5V
tolerant.

Change 9

SR2510 User's Manual

Interface Technology

2-28 Chapter 2: Theory of Operation

Rev. 05

(THIS PAGE INTENTIONALLY LEFT BLANK)

Change 9

SR2510 User's Manual 3-1

Rev. 05Interface Technology

Chapter 3: Installation

������������������

Installation

Figure 3-1.
Address Switches Set
to Logical Address 12.

Note

The logical addresses of the
SR2520 Expansion Modules must
be set to a higher value than the
logical address of the SR2510
Main Module. If there is more than
one SR2510 in a VXI chassis,
then the SR2520's with addresses
between any 2 SR2510's, will be
part of the lower addressed
SR2510's system. The SR2520
with the lowest numbered logical
address is Expansion Module #1.
The next highest SR2520 logical
address is Expansion Module #2.
The highest SR2520 logical ad-
dress is the most significant Ex-
pansion Module number. To verify
all Expansion Modules have been
recognized by the system, send a
“*IDN?” query command.

� � � � � � � 	

��

�� ���

�
��

''"�##
�(�!)�#

��*
�'+�

�"��!
�,��-

�&���, .*-,��
����� !�"#

������������

Scope of Chapter This chapter contains instructions for unpacking, inspecting, installing,
and checking out the SR2510 Main Module.

Your SR2510 was thoroughly inspected and tested before shipment from
the factory and is ready for immediate operation once all installation
procedures have been completed. Carefully remove the instrument from
its shipping carton and check for any obvious damage that may have
occurred during shipment. If damage is found, report it to the freight
carrier immediately. Interface Technology is not liable for damage that
may have occurred during transit. Save the shipping carton and all pack-
ing material for possible future use.

Logical Addressing

Before installation, the logical address for the SR2510 Main Module and
SR2520 Expansion Modules must be set. Set the address switches accord-
ing to the requirements of the slot 0 controller. The address switches are
numbered from one to eight. Switch 1 corresponds to the least significant
bit (LSB) of the logical address. The address is entered in binary, where
an ON switch sets the corresponding bit to 0 (Fig 3-1).

Unpacking and Inspection

Installation

SR2510 Module

3-2 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

The SR2510 Module may be installed in any available card slot other than
slot-0. SR2520 I/O Modules (if any) must be mounted immediately to the
right of the SR2510 Module. The SR2500 uses bus master functions to
identify the I/O boards installed in the system, so all SR2500 modules
must be located in the same chassis.

SR2510 Main Module

The SR2510 Control Card uses the BG3 and IACK from the VXI
backplane; therefore, these jumpers must be removed from the VXI
backplane for the first slot that houses the SR2510 Main Module. The
BG0, BG1 and BG2 are not used on the Main Module but are passed
through. The user may remove or install the jumpers for these signals as
required.

SR2520 Expansion Module

The SR2520 Expansion Module does not use any of the IACK or BG3
signals. These signals are passed through. The user may remove or
install the jumpers for these VXI slots as required.

For SR2510 and SR2520 modules configured with more 32 I/O channels,
additional 5 Vdc power is required from an external source. The external
power is supplied to the Aux. Power connector located on the module
front panel, see Fig. 3-2. The amount of operating current required from
the external power supply is directly proportional to the number of
modules installed. The SR2510 and SR2520 can each supply enough
internal 5 Vdc power to operate up to 32 I/O channels, independently of
external power. When more than 32 channels/module are used, approxi-
mately 7.5 amperes is required for each additional 32 channels (e.g., a 64
channel module requires 7.5 A from an external 5 Vdc power supply; a 96
channel module requires 15 A).

Slot Dependency

Backplane Jumpers

5 Vdc External Power
Requirements

SR2510 User's Manual 3-3

Rev. 05Interface Technology

Chapter 3: Installation

Figure 3-2.
Connection of External 5 Vdc Operating Power.

-
�

-
�

.
�

.
�

	�
���

6%#��	&��� $	&����7����%
�8

.�����	�% �5�8
" %#�/	�����%

.����	!����
�8
�!	3%/	���� �-9%���
�
/���/	���� �-9%���

�	�/�:
	;�:��	-	0�:���	�/�:
,�	"	(9%��	�*
��	��
��	��

;�	�

�
/

-�

� � � � � � � � 	
 �� �� ��

����
�������
������

���
��-��

����-��
�����

�.���-�

���-/0�������

��������

����������

�������

���������

�����������

���
���
���
���
���
���
���
���

���
�
�
�
�
�
�
�
�

���
��

�!
&�����

����
�������
������

���
��-��

����-��
�����

�.���-�

���-/0�������

��������

����������

�������

���������

�����������

���
���
���
���
���
���
���
���

���
�
�
�
�
�
�
�
�

���
��

�!
&�����

�

�

�������
���
/���
�	�0

�
����
��

���)1������������

�"2,3%$+����)1������������

�������
��

�!
���	��
� �!
���	��
�
�� ��� �� � �

���������	
���	���������
���������	
������������������������������	�������������
�����������������������
�
��������	���������� �!������� �!��
��"��������������������� �����

��#��$� �!�%���

Change 5

Power Up Sequencing

Note

It does not matter the order in which the external
power supply and the VXI chassis are powered
up, as long as both are on and stable when the
first SCPI command is sent to the SR2510.

3-4 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Option Switch (Fig 3-3) The Option Switch allows user selection of certain operating
parameters, including:

o host cotroller selection
o power-on diagnostics test (fast/slow)
o operating protocol (bus master/release on request)
o test post-processing speed (fast/slow)
o boot mode (EPROM/flash ROM)

Note
The SR2510 is shipped from the factory with all Option Switches set
to the OFF (default) position, see Fig 3-3.

Option Switch Settings

Note

Removing the SR2520 modules
in the manner indicated is nec-
essary to avoid damage to the in-
terconnect connectors located
between the various SR2520s
and the SR2510.

Note

This procedures applies to
SR2500 Firmware V1.00 (dated
11/22/95) or later.

To set Option Switch SW3 do this:

1. Turn system power off.

ESD WARNING
Perform the following steps only at an ESD workstation and observe
all ESD precautions to avoid damage to the instrument due to Electro-
Static Discharge.

2. If there are any SR2520 I/O Modules installed in the VXI chassis,
remove all of these modules first, before removing the SR2510. Begin
by removing the SR2520 furthest to the right of the SR2510 and
continue with the 2nd furthest from the right, the third furthest from
the right, etc. until all SR2520s have been removed. Now remove the
SR2510 from the VXI chassis.

Note
It is not necessary to remove the protective metal covers from the
SR2510 to make changes to the settings of the Option Switch.

Host Controller Selection

To use the SR2510 with H-P Slot-0 Controllers, set bit-6 of Option Switch
SW3 to ON. Also, when using an H-P controller, always set bit-7 of the
Option Switch to ON to select the short power-up diagnostic test.

For use with any other Slot-0 Controller, set bit-6 of Option Switch to OFF
(factory default). Set bit-7 of the Option Switch to select either the short
(ON) or normal (OFF) power-up diagnostic test, as desired.

SR2510 User's Manual 3-5

Rev. 05Interface Technology

Chapter 3: Installation

���

� � � � � � � 	

�	/0�����!!�1����(

��

���������	�
��	

��$	�
��%	$&'���(

����
���	�

� � � � � � � 	
���

��

�����������	��������2����

�����������	��������2���	�3

������	����
���	��

������	�����	��

���
����������	�	�����	�������	�����

���
��	�
�������	�4������	�����

����	��������2���	�3

����	��������2����	�3

������������	�

�	

��������	�

�	

���
����

���
���� Figure 3-3.

Option Switch SW3.

Note
When using an H-P Slot-0 controller, avoid using the HP command:

VXI:CONF:INF?
Instead, use the following command:

VXI:CONF:DLIST?

Power-On Diagnostic Test (fast/slow)

Two self-diagnostics test modes are available at power-up ... a short test, and a long test. The user may select
between either of these tests by selecting the proper setting of the Option Switch (SW3). Table 3-1 is a listing
of the self-diagnostics tests performed by the SR2510 firmware at power-up. The first column lists the name
of the test; the 2nd and 3rd columns indicate (yes or no) which tests are performed for the long and the short
test modes, respectively.

See Fig. 3-3. Set bit-7 of Option Switch SW2 to ON to select the short power-up test; set bit-7 to OFF to
select the long (default) test.

Note
When using the SR2510 in conjunction with an H-P Slot-0 Controller, always set the Option Switch for the
short diagnostics test, refer to previous procedure for using H-P controllers.

3-6 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Table 3-1. Self-Diagnostics Tests.

Test Performed Long Test Short Test

On-board program DRAM memory tests. Yes No

DRAM initialization. Yes Yes

VXI shared DRAM memory tests. Yes No

Shared DRAM initialization. Yes No

ROM checksum. Yes Yes

VXI interface chip test. Yes Yes

RS-232C / UART test. Yes Yes

Control GA access test. Yes Yes

SR5000 initialization. Yes Yes

Operating Protocol, Bus Master / Release-On-Request

SR2510 modules with firmware version 1.00 and later provide for select-
ing between Bus Master and Release-On-Request protocol. The SR2510
is shipped from the factory in the Bus Master (round robin) mode ... that
is, with bit-8 of Option Switch SW3 set to the OFF (up) position, see Fig
3-3. To select the Release-On-Request protocol, set bit-8 of SW3 to the
ON (down) position.

Test Post-Processing Speed (fast/slow)

Note
This procedure only applies to SR2510 modules configured with firm-
ware version 1.34 and later.

To speed up post test processing, the CRC values calculated by the
SR2510 can be automatically written to A32 memory, once a test is
complete. This function is activated by setting bit-5 of Option Switch
SW3 to the ON (down) position, see Fig 3-3. In this mode (fast mode), the
16-bit CRC values for each pin of each card in the SR2500 system is
written to A32 memory, starting at the first location. Refer to Table 3-2,
which lists details on the locations of each CRC value.

SR2510 User's Manual 3-7

Rev. 05Interface Technology

Chapter 3: Installation

Table 3-2. Storage of CRC Data in A32 Shared Memory.

CRC word for Card 1, Pin 1 (16-bits)
CRC word for Card 1, Pin 2 (16-bits)
CRC word for Card 1, Pin 3 (16-bits)
CRC word for Card 1, Pin 4 (16-bits)
CRC word for Card 1, Pin 5 (16-bits)

o
o
o

CRC word for Card 1, Pin 30 (16-bits)
CRC word for Card 1, Pin 31 (16-bits)
CRC word for Card 1, Pin 32 (16-bits)
CRC word for Card 2, Pin 1 (16-bits)
CRC word for Card 2, Pin 2 (16-bits)

o
o
o

CRC word for Card 2, Pin 32 (16-bits)
CRC word for Card 3, Pin 1 (16-bits)

o
o
o

Comment Index Data

+0
+2
+4
+6
+8
o
o
o

+58
+60
+62
+64
+66
o
o
o

+126
+128

o
o
o

Base of Shared Memory

End of Card 1
Start of Card 2

End of Card 2
Start of Card 3

The index for the CRC word for pin 1 of any card can be calculated usng
the formula:

index = [(card number - 1) x 64]

Example:

Find the index for the CRC word for pin 1 of card 3.

index = [(card numer - 1) x 64]
index = [(3 - 1) x 64]
index = 2 x 64
index = 128

Boot Mode (EPROM / Flash ROM)

The EPROM boot mode is only used to change (update) the SR2510
firmware. For such operatons, bit-1 of Option Switch SW3 is set to the
EPROM (down) position. For all other operating modes, bit-1 of Option
Switch SW3 is placed in the Flash ROM (up/default) position, see Fig 3-3.

Note
Instructions for installation are included with firmware updates. This
option only applies to SR2510 modules configured with firmware ver-
sion 2.01 or later.

3-8 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

SR2510 Main Module Fully
Mounted in Mainframe;

SR2520 Expansion Module Partially
Installed.

SR2510 and SR2520 Modules
Both Installed in Mainframe;

Master and Slave Connectors Mated.

������	��
	����	����
�

!��	"#$	�%
&'%#	����

�����
!%

���%�

&�����
()%�	���#*

!��	"#$	�%
&'%#	����

& +�
!%

���%�

&�����
()%�	���#*

!��	"#$	�%
&'%#	����

�����
!%

���%�

&�����
()%�	���#*

!��	"#$	�%
&'%#	����

& +�
!%

���%�

&�����
()%�	���#*

������	��
	����	����
�

Figure 3-4. Interconnect Between SR2510 and SR2520, Top View.

Main and Expansion Module Interconnect

All interconnections between the SR2510 Main Module and SR2520 Expansion Modules are made by means
of the VXI backplane and by a special connector at the side of the module. Interconnections are completed
whenever Expansion Modules are added to the system. No additional cabling between modules is required.
The second, and subsequent, SR2520 modules are connected in a similar manner.

SR2510 User's Manual 3-9

Rev. 05Interface Technology

Chapter 3: Installation

& +�	!%

���%�

��� 	!%+��	!��%��	�%	6�����
& +�	!%

���%�	�%	���	#-�����
!%

���%�	%
	&�����:

���/�	6�

���/�	6�

������	!%

���%�

)%�

�%��%�

������	!%

���%�

��� ��%
�

��%
�

�%��%�

)%�

���

4% �	7%�	���/�	6�

(���	#$*

4% �	7%�	���/�	6�

(���	#$*

�����	!%

���%�

��� 	!%+��	!��%��	�%	6�����
!%

���%�	�%	<=��
/	��%�	�%/� �:

������	!%

���%�

������	!%

���%�

������
������	����

������
����	����

Figure 3-5. SR2510 and SR2520 Interconnect Connectors.

3-10 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Each SR2520 modules can contain up to three I/O Boards, each of
which provides 32 I/O channels. As shipped from the factory, the
SR2510 will contain one, two, or three I/O Boards, depending on
the customer's order. If less than three I/O Boards are supplied,
cover plates are installed over the unused connector holes in the
front panel. Additional I/O Boards can be ordered and installed
by the user to expand system capability, at any time.

To install additional I/O Boards, you will need the following tools
and materials:

o screwdriver, No.1 Phillips
o screwdriver, 1/8" blade (pocket type)
o hex nut driver, 3/16"

To install a 2nd I/O Board in an SR2510 module, proceed as
follows:

1. Turn VXI chassis power OFF. Disconnect all external cables
from front panel of SR2510 module.

CAUTION

If there are SR2520 modules installed in the VXI chassis on the right
hand side of the module to which the additional I/O Board is to be
installed, these modules must be removed first to avoid damage to
the interconnects between modules.

2. Observing the caution above, remove the SR2510 module
from the VXI chassis.

3. Place the module on a clean workbench, orient the module to
gain access to the right side cover, see Fig 3-6.

4. Remove the 14 #4-40 x .14" Phillips flat head screws securing
the cover to the module; 11 screws are located on the side of
the module and three more screws are located on the front of
the module. The screws to be removed are indicated by the
heavy circles in Fig 3-6.

5. Remove the right side cover from the SR2510 module.

6. Remove the 2 cover plates from the front of the module for
the I/O Board to be installed ... i.e., cover plates for I/O Board
2 or cover plates for I/O Board 3 are secured to the front panel
by four No.4-40 x 1/4" Phillips flat head screws, see Fig 3-7
(note: in Fig 3-7, these screws are shown, blown away from
the module, directly to the left of the two Interface Boards).

Installing I/O Boards

Required Equipment

Procedure ... Install I/O Bd No.2

SR2510 User's Manual 3-11

Rev. 05Interface Technology

Chapter 3: Installation

7. See Fig 3-7 and Fig 3-8. Remove the three spacer stacks at positions
1, 2, and 3, each consisting of two 1/2" and one 7/16" hex spacers (see
Fig. 3-8a1). Also remove the No.4-40 x 1/4" Phillips pan head screw,
split lock washer and nylon washer at position 4 of the I/O Board (see
Fig 3-7 and Fig 3-8b1).

8. See Fig 3-7. Loosen, but do not remove, the three No.4-40 x 1/4"
Phillips flat head mounting screws securing the Control / Timing
Board to the module front panel. (note: screws indicated by black
triangles in Fig 3-7). Also loosen, but do not remove, the two small
slotted head retainer screws securing the module latches to the mod-
ule, see Fig 3-6. The front panel should now swing out slightly, away
from the module, to allow access to install the I/O Board.

9. See Fig 3-7.Carefully place the new Expansion I/O Board, with the
Interface Board(s) attached, in position inside the module.

10. See Fig 3-7. Connect the ribbon cable to J2; connect the mini-
motherboard connector, and attach the power connector at J6 of the
newly installed I/O Board.

11. See Fig 3-7 and Fig 3-8a2. Install the three spacer stacks at positions
1, 2, and 3 each consisting of one 1/2" and one 7/16" hex spacers (see
Fig 3-8a2). Also install a 7/16" hex spacer and the No.4-40 x 1/4"
Phillips pan head screw, split lock washer and nylon washer at posi-
tion 4 of the I/O Board (see Fig 3-7 and Fig 3-8b2).

12. See Fig 3-7. Install the four No.4-40 x 1/4" flat head Phillips screws
securing the Interface Boards of the new I/O Board to the front panel

13. Retighten the three No.4-40 x 1/4" Phillips flat head mounting screws
securing the Control / Timing Board to the module front panel that
were loosened in step 8. Also retighten the two small slotted head
retainer screws securing the module latches to the module that were
loosened in step 8.

14. Reinstall the module cover. Reinstall and tighten the 14 mounting
screws securing the cover to the module, see Fig 3-6.

The procedure for installing I/O Board No.3 is, essentially, the same as
that for installing I/O Board No.2, except for the arrangement of the
spacer stacks at positions 1-3 and position 4, as depicted in Figures 3a and
3b, respectively. Use these figures as a guideline to ensure correct I/O
Board spacing inside the module.

Note when installing I/O Boards that the power supplied to connector J6
of I/O Board No.1 is taken from the Power Interface Board (see lower part
of Fig 3-7), while power supplied to the same connector (J6) of I/O

Procedure ... Install I/O Bd No.3

3-12
S

R
2510 U

ser's M
an

u
al

R
ev. 05

In
terface T

ech
n

o
lo

g
y

C
h

ap
ter 3: In

stallatio
n

Boards No.2 and No.3 is taken from the Aux Power Cable going to the Aux Power connector on the module front panel. If I/O Boards No.2
and/or No.3 are not used, the unused connectors of the Aux Power Cable will be tied off and tucked loosely inside the module.

Also note that the ribbon cable (upper part of Fig 3-7) has a separate connector for each of the I/O Boards. Unused connectors on the ribbon
cable are left unterminated.

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

	�+)!���'����5�"���
!!,)�#�(�!)��6���36�6��7���68
����'�+3��)�--�*#��-,!���,'�� "�(#

��!�" ���� !� �##���5�"
!!,)�#�(�!)�/���36�6��7���68
����'�+3��)�--�*#��-,!���,'�� "�(#

�	/0����"��!����(�	/0���	�+)!���'�����(

��'9-�

,!)

	�!,���"
� "�(

��'9-�

,!)

	�!,���"
� "�(

Figure 3-6. Cover Screws

S
R

2510 U
ser's M

an
u

al
3-13

R
ev. 05

In
terface T

ech
n

o
lo

g
y

C
h

ap
ter 3: In

stallatio
n

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

�	/0��
�"��!����(

�	/0���	�+)!���'�����(

��!�":, ����,"'

��!�":, ����,"'

��(�"������ !�"

�������!)�";�,"'

	�;;����,;-�

��"1��,!�"
����� !�"

�	/0�����!!�1����(

�	/0�����*����(

��(�"
��!�":, �
��,"'

������,"'

��!�":, ����,"'
��9�!��+�� "�(#

��36�6��7���68
�)�--�*#��-,!���,'�� "�(

�6�*-, �#�

��(�"���!�":, ���'3

<�
</

<=

��

��(�"���!�":, ���'3

<�
</

<=

��

���� ������)*

+*

���� ������)(

���� ������)�

���� ������)�

���������	�
��	

���������	�
��	

�	������	�
��	

�	������	�
��	

���!"�-���1��+���,"'
��9�!��+�� "�(#

��36�6��7���68
�)�--�*#��-,!���,'�� "�(

�=�*-, �#�

	�;;����,;-�
+*

+*

+*

<=

<$

<$

<$

<$

	�+)!���'�
�:!���'�

97���(�"��,;-�

��/8��*, �"

>��$8��*, �"

>��$8��*, �"

>��$8��*, �"

������+3=,
��"���!,�-#

������+3=;
��"���!,�-#

��!�?����!��",(��!��� ,-�

Figure 3-7. I/O Board Mounting Hardware.

3-14 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Figure 3-8b.
Buildup of Standoff Spacers at Position 4 for Configurations of One, Two, and Three I/O Boards.

������������	
��� �����
�����	
���� ��������������	
����

��1��+����!"�-��'

	�+)!���'����5�"

���������	

>��$8��*, �"

������,"'���3�

>��$8��*, �"

>��$8��*, �"

��1��+����!"�-��'

	�+)!���'����5�"

���������	

>��$8��*, �"

>��$8��*, �"

��1��+����!"�-��'

	�+)!���'����5�"

���������	

>��$8��*, �"

��36�6��7���682�����'�+3
�)�--�*#��-,!���,'�� "�(

���������	���������	

���������	

������,"'���3/

������,"'���3=

������,"'���3�

������,"'���3/

������,"'���3�

������������	
��� ������
�����	
���� ��������������	
����

��1��+����!"�-��'

���������	

>��$8��*, �"

������,"'���3�

>��$8��*, �"

��1��+����!"�-��'

���������	

>��$8��*, �"

��1��+����!"�-��'

���������	

������,"'���3/

������,"'���3=

������,"'���3�

������,"'���3/

������,"'���3�

��36�6��7���68
�)�--�*#��,����,'�� "�(2
��36��*-�!�
� .(,#)�"2
,�'���36��@-����,#)�"

�:!���'����5�"
�:!���'����5�"
�:!���'����5�"

�:!���'����5�"
�:!���'����5�"
�:!���'����5�"

��36�6��7���682�����'�+3
�)�--�*#��-,!���,'�� "�(

��36�6��7���682�����'�+3
�)�--�*#��-,!���,'�� "�(

��36�6��7���68
�)�--�*#��,����,'�� "�(2
��36��*-�!�
� .(,#)�"2
,�'���36��@-����,#)�"

��36�6��7���68
�)�--�*#��,����,'�� "�(2
��36��*-�!�
� .(,#)�"2
,�'���36��@-����,#)�"

Figure 3-8a.
Buildup of Standoff Spacers at Positions 1-3 for Configurations of One, Two, and Three I/O Boards.

SR2510 User's Manual 3-15

Rev. 05Interface Technology

Chapter 3: Installation

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

�� ��

��

��

��

��

��

��

��

�,

��

��

�>

��

�,

��

�
���	� 5	>

�
���	� 5	�

�
���	� 5	�

�
���	� 5	�

�
���	� 5	,

�
���	� 5	�

�
���	� 5	�

�
���	� 5	�

�
/

�
/

�
/

�
/

�
/

�
/

�
/

�
/

 ��!�"	#	$��"

���	%��	&��'�&(�	��)�	"�����	�����

��

���	%��	&��'�&*�	�����	"�����	�����

+�����	��������	���	������
,�-��	.���"	���������

Figure 3-9. SR2510 Input Flags Connector.

Note

Connector shown as viewed from
front of module.

Change 5

3-16 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

4���($3)��(5�

4���($3)��(5

4���($3)��(5�

�(2,6�����7��(31,��3'&2$2,

4���($3)��(5�
�8���.��

�)	����	��0�>
�)	����	��0��

�,� ",�

�,, ",,

�,� ",�

�,� ",�

�,� ",�

��� "��

��� "��

��> "�>

��� "��

��� "��

��� "��

��, "�,

��� "��

��� "��

��� "��

��� "��

��� "��

��> "�>

��� "��

��� "��

��� "��

��, "�,

��� "��

��� "��

��� "��

��� "��

��� "��

��> "�>

��� "��

��� "��

��� "��

��, "�,

��� "��

��� "��

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

9%�	1��/

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�, �
���	�,

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�> �
���	�>

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�, �
���	�,

.�����	�� �
���	��

.�����	�� �
���	��

9%�	1��/

Mating Connector for SR2510
TTL, 3.3 V, or CMOS, Ch. 00-15.

3M Company Part No. 10168-6000EC

Figure 3-10. SR2510 Signal Connector Pinouts, TTL, 3.3 V, or CMOS, Ch. 00-15.

Change 9

Note

Connector shown as viewed from
front of module.

SR2510 User's Manual 3-17

Rev. 05Interface Technology

Chapter 3: Installation

Figure 3-11. SR2510 Signal Connector Pinouts, TTL, 3.3 V, or CMOS, Ch. 16-31.

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

4���($3)��(5�

4���($3)��(5

4���($3)��(5�

�(2,6�����7��(31,��3'&2$2,

4���($3)��(5�
�8���.��

�)	����	��0��
�)	����	��0,�

�,� ",�

�,, ",,

�,� ",�

�,� ",�

�,� ",�

��� "��

��� "��

��> "�>

��� "��

��� "��

��� "��

��, "�,

��� "��

��� "��

��� "��

��� "��

��� "��

��> "�>

��� "��

��� "��

��� "��

��, "�,

��� "��

��� "��

��� "��

��� "��

��� "��

��> "�>

��� "��

��� "��

��� "��

��, "�,

��� "��

��� "��

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

9%�	1��/

.�����	�� �
���	��

.�����	�> �
���	�>

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�, �
���	�,

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�� �
���	��

.�����	�> �
���	�>

.�����	�� �
���	��

.�����	�� �
���	��

.�����	,� �
���	,�

.�����	,� �
���	,�

9%�	1��/

Mating Connector for SR2510
TTL, 3.3 V, or CMOS, Ch. 16-31.

3M Company Part No. 10168-6000EC

Change 9

Note

Connector shown as viewed from
front of module.

3-18 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Figure 3-12. SR2510 Signal Connector Pinouts, Differential TTL and LVDS, Ch. 00-15.

Mating Connector for SR2510
Differential TTL and LVDS, Ch. 00-15.

3M Company Part No. 10168-6000EC

Change 5

4���($3)��(5�
�8���.��

�,� ",�
�,, ",,
�,� ",�
�,� ",�
�,� ",�
��� "��
��� "��
��> "�>
��� "��
��� "��
��� "��
��, "�,
��� "��
��� "��
��� "��
��� "��
��� "��
��> "�>
��� "��
��� "��
��� "��
��, "�,
��� "��
��� "��
��� "��
��� "��
��� "��
��> "�>
��� "��
��� "��
��� "��
��, "�,
��� "��
��� "��

�
/

�
���	��

�
���	��

�
���	��

�
���	�,

�
���	��

�
���	��

�
���	��

�
���	�>

�
���	��

�
���	��

�
���	��

�
���	��

�
���	��

�
���	�,

�
���	��

�
���	��

.�����	��

.�����	��

.�����	��

.�����	�,

.�����	��

.�����	��

.����	��

.�����	�>

.�����	��

.�����	��

.�����	��

.�����	��

.�����	��

.�����	�,

.�����	��

.�����	��

�
/

�
/

�
���	��

�
���	��

�
���	��

�
���	�,

�
���	��

�
���	��

�
���	��

�
���	�>

�
���	��

�
���	��

�
���	��

�
���	��

�
���	��

�
���	�,

�
���	��

�
���	��

.�����	��

.�����	��

.�����	��

.�����	�,

.�����	��

.�����	��

.����	��

.�����	�>

.�����	��

.�����	��

.�����	��

.�����	��

.�����	��

.�����	�,

.�����	��

.�����	��

�
/

<�

����
������

���
��

�!

������

����
�	�

���������

4���($3)��(5�

4���($3)��(5

4���($3)��(5�

Note

Connector shown as viewed from
front of module.

SR2510 User's Manual 3-19

Rev. 05Interface Technology

Chapter 3: Installation

Figure 3-13. SR2510 Signal Connector Pinouts, Differential TTL and LVDS, Ch. 16-31.

Mating Connector for SR2510
Differential TTL and LVDS, Ch. 16-31.

3M Company Part No. 10168-6000EC

Change 5

4���($3)��(5�
�8���.��

�,� ",�
�,, ",,
�,� ",�
�,� ",�
�,� ",�
��� "��
��� "��
��> "�>
��� "��
��� "��
��� "��
��, "�,
��� "��
��� "��
��� "��
��� "��
��� "��
��> "�>
��� "��
��� "��
��� "��
��, "�,
��� "��
��� "��
��� "��
��� "��
��� "��
��> "�>
��� "��
��� "��
��� "��
��, "�,
��� "��
��� "��

�
/

�
���	��

�
���	�>

�
���	��

�
���	��

�
���	��

�
���	��

�
���	��

�
���	�,

�
���	��

�
���	��

�
���	��

�
���	�>

�
���	��

�
���	��

�
���	,�

�
���	,�

.�����	��

.�����	�>

.�����	��

.�����	��

.�����	��

.�����	��

.����	��

.�����	�,

.�����	��

.�����	��

.�����	��

.�����	�>

.�����	��

.�����	��

.�����	,�

.�����	,�

�
/

�
/

�
���	��

�
���	�>

�
���	��

�
���	��

�
���	��

�
���	��

�
���	��

�
���	�,

�
���	��

�
���	��

�
���	��

�
���	�>

�
���	��

�
���	��

�
���	,�

�
���	,�

.�����	��

.�����	�>

.�����	��

.�����	��

.�����	��

.�����	��

.����	��

.�����	�,

.�����	��

.�����	��

.�����	��

.�����	�>

.�����	��

.�����	��

.�����	,�

.�����	,�

�
/

<�

����
������

���
��

�!

������

����
�	�

���������

4���($3)��(5�

4���($3)��(5

4���($3)��(5�

Note

Connector shown as viewed from
front of module.

3-20 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

4���($3)��(5�

4���($3)��(5

4���($3)��(5�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
,�
,�
,�
,�
,�
��
��
��
��
��
��
��
�,
��
��
��
��
��
��

>�
>�
>�
>�
>�
��
��
��
��
��
��
��
��
��
��
��� �
/

�
/
�
���(��*;
)������(��*;
.�����(��*;

�>
��
�,
��
��
�>
��
�,
��
��
�>
��
�,
��
,�
,>
,�
,,
,�
��
�>
��
�,
��
��
�>
��
�,
��
��
�>
��
�,
��

��
>�
>,
>�
>>
>�
��
�,
��
�>
��
��
�,
��
�>
���
/

�
/
�
���(��*0

)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(�,*0
)������(�,*0
.�����(�,*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(�>*0
)������(�>*0
.�����(�>*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(�,*0
)������(�,*0
.�����(�,*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*;
)������(��*;
.�����(��*;
�
���(�,*;
)������(�,*;
.�����(�,*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(�>*;
)������(�>*;
.�����(�>*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(�,*;
)������(�,*;
.�����(�,*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;

4���($3)��(5�
�85���.��

Mating Connector for SR2510
ECL I/O Connector, Ch. 00-15.

3M Company Part No. 101AO-6000EC

Figure 3-14. SR2510 Signal Connector Pinouts, Differential ECL, Ch. 00-15.

Change 5

Note

Connector shown as viewed from
front of module.

SR2510 User's Manual 3-21

Rev. 05Interface Technology

Chapter 3: Installation

Figure 3-15. SR2510 Signal Connector Pinouts, Differential ECL, Ch. 16-31.

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
,�
,�
,�
,�
,�
��
��
��
��
��
��
��
�,
��
��
��
��
��
��

>�
>�
>�
>�
>�
��
��
��
��
��
��
��
��
��
��
��� �
/

�
/
�
���(,�*;
)������(,�*;
.�����(,�*;

�>
��
�,
��
��
�>
��
�,
��
��
�>
��
�,
��
,�
,>
,�
,,
,�
��
�>
��
�,
��
��
�>
��
�,
��
��
�>
��
�,
��

��
>�
>,
>�
>>
>�
��
�,
��
�>
��
��
�,
��
�>
���
/

�
/
�
���(,�*0

)������(,�*0
.�����(,�*0

�
���(,�*0
)������(,�*0
.�����(,�*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(�>*0
)������(�>*0
.�����(�>*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(�,*0
)������(�,*0
.�����(�,*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(�>*0
)������(�>*0
.�����(�>*0

�
���(��*0
)������(��*0
.�����(��*0

�
���(,�*;
)������(,�*;
.�����(,�*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(�>*;
)������(�>*;
.�����(�>*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(�,*;
)������(�,*;
.�����(�,*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(��*;
)������(��*;
.�����(��*;
�
���(�>*;
)������(�>*;
.�����(�>*;
�
���(��*;
)������(��*;
.�����(��*;

4���($3)��(5�
�85���.��

4���($3)��(5�

4���($3)��(5

4���($3)��(5�

Mating Connector for SR2510
ECL I/O Connector, Ch. 16-31.

3M Company Part No. 101AO-
6000EC

Change 5

Note

Connector shown as viewed from
front of module.

3-22 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Figure 3-16. SR2510 Signal Connector Pinouts, Variable Voltage, Ch. 00-31.

Mating Connector for SR2510
Variable Voltage, Ch 00-31.

3M Company Part No. 10168-6000EC

Change 8

Note

Connector shown as viewed from
front of module.

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

4���($3)��(5�

4���($3)��(5

4���($3)��(5�

4���($3)��(5�
�85���.��

�)	����	��0�>
�)	����	��0��

�,� ",�

�,, ",,

�,� ",�

�,� ",�

�,� ",�

��� "��

��� "��

��> "�>

��� "��

��� "��

��� "��

��, "�,

��� "��

��� "��

��� "��

��� "��

��� "��

��> "�>

��� "��

��� "��

��� "��

��, "�,

��� "��

��� "��

��� "��

��� "��

��� "��

��> "�>

��� "��

��� "��

��� "��

��, "�,

��� "��

��� "��

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�
/ �
/

�-.	!'	��

�-.	!'	��

�-.	!'	��

�-.	!'	�,

�-.	!'	��

�-.	!'	��

�-.	!'	��

�-.	!'�>

�-.	!'	��

�-.	!'	��

�-.	!'	��

�-.	!'	��

�-.	!'	��

�-.	!'	�,

�-.	!'	,� �-.	!'	��

�-.	!'	,� �-.	!'	��
�)	����	��0�,
�)	����	��0,�

�-.	!'	��

�-.	!'	��

�-.	!'	�>

�-.	!'	��

�-.	!'	��

�-.	!'	��

�-.	!'	�,

�-.	!'	��

�-.	!'	��

�-.	!'	��

�-.	!'	��

�-.	!'	��

�-.	!'	�>

�-.	!'	��

�(2,6�����7��(31,��3'&2$2,

SR2510 User's Manual 3-23

Rev. 05Interface Technology

Chapter 3: Installation

Mating Connector for SR2510
Rail Voltage Connector.
3M Company

Part No. 10136-6000EC

Figure 3-17. SR2510 Rail Voltage Connector Pinouts.

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

,�
,,
,�
��
�>
��
�,
��
��
�>
��
�,
��
�
>
�
,
�

,�
,�
,�
,�
��
��
��
��
��
��
��
��
��
��
�
�
�
�

�9�
�9�
�9�
�)4�

�)3"

�9�
�.4�

�.3"

�9�
�.4�

�.3"

�9�
�.4�

�.3"

�9�
�.4�

�.3"

�9�

�9�
�9�
�9�
�)3�

�9�
�)4"

�.3�

�9�
�.4"

�.3�

�9�
�.4"

�.3�

�9�
�.4"

�.3�

�9�
�.4"

4���($3)��(5�

4���($3)��(5

4���($3)��(5�

Change 5

Note

Connector shown as viewed from
front of module.

3-24 SR2510 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Figure 3-18. SR2510 Auxiliary Power Connector Pinouts.

�����
����	
�
	�����

��
	����

������
�����

�������

�����������
�

������
�

��
�����
�

�	���
�

��������

������	��

���
���
���
���
���
���
���
���

�
�
�
�
�
�
�

�
�

	!
���

�!

��������
���
������� ���
��������
���

������
��	

�����

	*"'+'$39��(:,3��(%%,12(35

-���

�%)

%41

Mating Connector for SR2510
Auxiliary Power Connector.
Connector Housing:

ITT CANNON DAM3W3SA197
Pins (3 ea):

ITT CANNON DM53744-1
Metal Backshell:

ITT CANNON 980-2000-346

Change 5

Note

Connector shown as viewed from
front of module.

Published by
Interface Technology, Inc.

300 S. Lemon Creek Drive
Walnut, CA 91789

User's Manual

SR2520 Expansion Module

�����������

	
��������
��
�����������

�������������������������

�����
������

�	

���

���
������
���	
��

���������

Record of Changes

Entered By
Title or

Brief Description
Date of
Change

Change
No.

SR2520 User's Manual

Reformat

Revised external power supply info (pg 3-3); added pinout data
for differential TTL (pg 3-13, 3-14)

Added coverage for differential TTL (pg 2-10 - 2-12).

Added LVDS I/O (pgs 1-6, 1-7, 1-8, 2-11, 2-12, 3-13, 3-14)

Corrected connector orientation in Figs 3-8 thru 3-16 and added
note explaining relationship of pinout views to instrument
illustrations. Added power sequencing note to page 3-3.

Corrected paragraph wording for LVDS (pg 2-12)

Reformat specifications page, pg 1-6. Deleted pgs 1-7 and 1-8.

pg 2-11 ... 1st para., lines 2 and 3, changed "... -4V to +7V" to "...
-3V to +7V"; changed "... -4 to +5.5V" to "...-2.9 to +5.5V."

Corrected connector pinouts in Fig 3-14 (pins B01 and B02).

Corrected I/O Characteristics table on pg. 1-6. Corrected
Figures 2-4 and 2-5; added Fig 2-10. Added pgs 2-13 (3.3 V I/O)
and 2-14 (blank). Updated Fig 3-8 and 3-9 to include 3.3 V I/O.

Apr 98

Mar 00

Mar 00

Jun 00

Oct 00

Jun 01

Sep 01

May 03

May 03

Oct 03

Rev 05

Change 1

Change 2

Change 3

Change 4

Change 5

Change 6

Change 7

Change 8

Change 9

Factory

Factory

Factory

Factory

Factory

Factory

Factory

Factory

Factory

Factory

SR2520 User's Manual iii

Rev. 05Interface Technology

Table of Contents

Contents

Chapter 1
General Information

Chapter 2
Theory of Operation

About This Manual .. 1-1
Arrangement of Contents .. 1-1
Applicability ... 1-1
Supersedure Notice ... 1-1

Equipment Description .. 1-1
Expansion Board ... 1-1
I/O Boards ... 1-2
VXI Bus Interface ... 1-2

Real Time Digital Testing.. 1-3
Controls and Indicators.. 1-4
LEDs .. 1-4
I/O Connections ... 1-4
Auxiliary Power Connector ... 1-4
Interconnection With Other SR2500 Modules .. 1-5
SR2520 Specifications .. 1-6

I/O Board ... 2-1
Stimulus and Response Memory ... 2-2
Record Memory ... 2-2
Delayed Clock Generators ... 2-2
Stimulus Gate Arrays .. 2-3

Algorithmic Stimulus Pattern Generator .. 2-3
Stimulus Output Pin Formatter ... 2-4

Response Gate Arrays ... 2-4
Expected Response Pattern Generator .. 2-5
Response Input Formatter ... 2-6
Response Comparator ... 2-6
Input Qualifier ... 2-6
Record Control .. 2-6
CRC Logic .. 2-7

Algorithmic Commands .. 2-8
NONAlgorithmic .. 2-8
INCrement ... 2-8
DECrement .. 2-8
XOR .. 2-8
SLEFTZero ... 2-8
SLEFTOne .. 2-9
SLEFTComplement .. 2-9
RLEFT .. 2-9
SRIGHTZero ... 2-9

SR2520 User's Manual iv

Rev. 05Interface Technology

Table of Contents

Contents (continued)

Driver/Receiver Board ... 2-9
TTL Driver/Receiver Logic .. 2-10
CMOS Driver/Receiver Logic .. 2-10
Differential ECL Driver/Receiver Logic .. 2-10
Programmable Driver/Receiver Logic .. 2-11

Scope of Chapter ... 3-1
Unpacking and Inspection ... 3-1
Installation ... 3-1

Logical Addressing ... 3-1
Slot Dependency .. 3-2
Backplane Jumpers .. 3-2
5 Vdc External Power Requirements .. 3-2
Main and Expansion Module Interconnect ... 3-4
Installing I/O Boards ... 3-6
Required Equipment .. 3-6
Procedure ... Install I/O Bd No.2 ... 3-6
Procedure ... Install I/O Bd No.3 ... 3-7

Fig. 1-1, SR2520 Module With Three I/O Boards
and Six Driver/Receiver Boards ... 1-2

Fig. 1-2, VXI Chassis Showing SR2510 Main Module
and SR2520 Expansion I/O Module ... 1-3

Fig. 1-3, Connectors and Indicators ... 1-4
Fig. 1-4, SR2510 and SR2520 Interconnection, Top View 1-5
Fig. 2-1, SR2520 I/O Board Block Diagram ... 2-1
Fig. 2-2, Stimulus Gate Array Block Diagram .. 2-4
Fig. 2-3, Response Gate Array .. 2-5
Fig. 2-4, TTL Single Ended Driver/Receiver (16 per D/R Board) 2-11
Fig. 2-5 CMOS Single Ended Driver/Receiver (16 per D/R Board) 2-11
Fig. 2-6 Differential TTL Driver/Receiver (16 per D/R Board) 2-11
Fig. 2-7 Differential ECL Driver/Receiver (16 per D/R Board) 2-12
Fig. 2-8, Programmable Driver/Receiver (

Fig. 3-1, Address Switches Set to Logical Address 12(hex) 3-1
Fig. 3-2, Connection of External 5 Vdc Operating Power 3-3
Fig. 3-3, Interconnect Between SR2510 and SR2520, Top View 3-4
Fig. 3-4, SR2510 and SR2520 Interconnect Connectors 3-5
Fig. 3-5, Cover Screws .. 3-8
Fig. 3-6, I/O Board Mounting Hardware ... 3-9
Fig. 3-7a, Buildup of Standoff Spacers at Positions 1-3

for Configurations of One, Two, and Three I/O Boards 3-10
Fig. 3-7b, Buildup of Standoff Spacers at Position 4

Chapter 3
Installation

List of Figures

SR2520 User's Manual v

Rev. 05Interface Technology

Table of Contents

Contents (continued)

Fig. 3-8, SR2520 Signal Connector Pinouts,
TTL or CMOS, Ch. 00-15 ... 3-11

Fig. 3-9, SR2520 Signal Connector Pinouts,
TTL or CMOS, Ch. 16-31 ... 3-12

Fig. 3-10, SR2520 Signal Connector Pinouts,
Differential ECL, Ch. 00-15 ... 3-13

Fig. 3-11, SR2520 Signal Connector Pinouts,
Differential ECL, Ch. 16-31 ... 3-14

Fig. 3-12, SR2520 Signal Connector Pinouts,
Variable Voltage, Ch. 00-31 .. 3-15

Fig. 3-13, SR2510 Rail Voltage Connector Pinouts 3-16
Fig. 3-14, SR2520 Auxiliary Power Connector Pinouts 3-17

SR2520 User's Manual vi

Rev. 05Interface Technology

Table of Contents

(THIS PAGE INTENTIONALLY LEFT BLANK)

SR2520 User's Manual 1-1

Rev. 05Interface Technology

Chapter 1: General Information

C H A P T E R 1

General Information
This manual provides installation and operation information for the
Interface Technology SR2520 Expansion Module. Information contained
herein is intended for use by technical personnel involved in the actual
installation and operation of the subject instrument.

Arrangement of Contents

Information contained in this manual is arranged in three chapters, as
follows:

• Chapter 1 General Information
• Chapter 2 Theory of Operation
• Chapter 3 Installation

Applicability

The information contained in this manual covers a single equipment
configuration designated SR2520 Expansion Module. Differences, if any,
between this equipment and the actual equipment supplied are covered by
Difference Data included at the front of this manual.

Supersedure Notice

This manual supersedes portions of SR2500 User's Manual, Rev.04 and all
previous issues of that publication.

See Fig 1-1. The SR2520 is an Expansion Module used in conjunction
with the SR2510 Main Module, which together comprise the SR2500
Digital Test Subsystem. The major components of the SR2520 include an
Expansion Board, one, two, or three I/O boards, and up to six Driver/
Receiver boards (2 per I/O board). Other components include boards for
timing distribution, power distribution and interface logic.

Expansion Board.

The SR2520 Expansion Board accepts input from the SR2510 Main
Module and distributes clocking and test sequence control functions for all
I/O boards.

About This Manual

Equipment Description

SR2520 User's Manual

Interface Technology

1-2 Chapter 1: General Information

Rev. 05

Figure 1-1.
SR2520 Module With Three I/O Boards and Six Driver/Receiver Boards.

I/O Boards

The I/O boards within the SR2520 are register-based. Each I/O board provides 32 I/O channels. The SR2520
can accommodate up to three I/O boards (up to 96 channels) and up to five SR2520s, each containing up to
three I/O boards (96 channels) can be included in a single SR2500 subsystem. Each I/O channel generates
digital stimulus patterns, provides real-time comparison capabilities on the response inputs, and contains logic
analyzer type triggering and data recording functions, all at speeds up to 25 MHz.

Each stimulus pin contains output and tristate memories, allowing bidirectional signal paths. The response
pin provides expected response and mask ("don't care") memories, which generate the expected input pattern
used for the real-time comparison. The logic analyzer triggering and recording subsystem allows the record-
ing of either the actual input pattern or the results of the real-time comparison of the expected response
pattern and the input pattern (error data). Either may be saved and then later retrieved from the record
memory, in much the same way you would use a logic analyzer.

VXI Bus Interface

Based on the IT9010 industry standard VXI bus interface chip, the SR2520 meets the requirements of VXI
Bus Specification Versions 1.3 and 1.4. The SR2520 VXI bus interface receives commands, test parameters,
data, and timing signals from the SR2510 Main Module.

SR2520 User's Manual 1-3

Rev. 05Interface Technology

Chapter 1: General Information

Figure 1-2.
VXI Chassis Showing SR2510 Main Moudle and SR2520 Expansion Module.

� � � � � � � � � �� �� �

�����
	
	���
����		

���
�����

��	��	�
�����

�������

�������������

�������

����������

�������

��������

���������	

���
���
���
���
���
���
���
���

���
�
�
�
�

!
�
�

���
���

���

������������
��	��	�!���
�����	����	�

������
�	�

�����

������
�������

���
	�!�!�

�"#$%&'(%
�()*+,

�	

���

��������������� �

�����
!"#�
!�$%�

����
�&'"�(#��
!�$%�

SR2520 User's Manual

Interface Technology

1-4 Chapter 1: General Information

Rev. 05

Controls and Indicators

See Fig. 1-3. All the connectors and LED indica-
tors for the SR2520 are located on the module
front panel.

LEDs

There are two LEDs located at the top of the
SR2520 front panel.

• POWER (Green) - The POWER LED is
connected to the system reset signal and is lit
during normal operation. The LED will turn
off during a system reset or if the +5V power
supply drops below +4.7V.

• SYSFAIL (Red) - The SYSFAIL LED is off
during normal operation. During the power-
up sequence the LED is lit until the internal
self-test passes, or remains lit if the self-test
fails. If the self-test fails, error code informa-
tion stored in the Data Low Register indicates
the origin of the self-test failure (See Appen-
dix A of this manual).

I/O Connectors

Each I/O Board (up to 3) has two I/O connectors.
The number of pins, the pin arrangement, and the
pin function varies, depending on the type of logic
for which the I/O Board is configured (TTL, ECL,
CMOS, or Variable Voltage). Refer to Chapter 3,
Installation for additional details.

Auxiliary Power Connector

An Aux Pwr connector is provided for connecting
an external source of +5 Vdc when the SR2520 is
configured with more than one I/O Board. Refer
to Chapter 3, Installation for additional details.

Figure 1-3.
Connectors and Indicators.

)��*+�
�	
������

�����
��,,��-��

�����
������

�	

���

���
������
���	
��

���������

�����
�������

�.��/�"�$���.��/�"�$��

�.��/�"�$�

SR2520 User's Manual 1-5

Rev. 05Interface Technology

Chapter 1: General Information

��������	
���	����	����	��

������	����
��������	
�

�	���
��������

��� !"
#$����
��%

������	����
��������	
�

��	&�
��������

��� �"
#$����
��%

������	����
��������	
�

�	���
��������

��� !"
#$����
��%

������	����
��������	
�

��	&�
��������

��� �"
#$����
��%

��������	
���	����	����	��

Figure 1-4.
SR2510 and SR2520 Interconnection, Top View.

Interconnection With Other SR2500 Modules

All interconnections between the SR2520 Expansion Module and other SR2500 modules are made by means
of the VXI backplane, and by a special connector at the side of the module. Interconnections are completed
whenever Expansion Modules are added to the system. No additional cabling between modules is required.
Interconnection between the SR2520 Expansion Module and the SR2510 Main Module is shown below.
Refer to Chapter 3 "Installation" for additional interconnection information.

Interface Technology

1-6

Rev. 05 Change 9

SR2520 SPECIFICATIONS*

Data Formats:
NRZ Non-Return-to-Zero
RZ Return to Zero
RONE Return-to-One
RC Return-to-Complement
RI Return-to-Inhibit / Tristate

VXI Specifications
Interface Compatibility:

SR2520 Register-based, Servant
Revision 1.4
Size C-size, Dual slot
Configuration Static
Interrupt Level Programmable 1-7
Triggers TTLTRG 0-7

Power Requirements: (Note 2)
+5.0 volts 21.5 A, max.
-5.2 volts 1.0 A, max.
+12.0 volts 0.1 A, max.
-12.0 volts 0.1 A, max.
-2.0 volts 1.0 A, max.

Note 2: Power values specified are with three TTL I/O cards installed.
Cooling Requirements:

Per Slot Avg. 117 W, maximum per module (Note 2)
Airflow 8 liters / sec per module; 4 liters / sec per slot @

0.2 mm of water pressure / 10°C temp. rise
Environmental Specifications:

Temperature Storage = -40°C to +75°C
Operating = 0°C to +45°C

Humidity 5% to 95% relative, noncondensing

Software Drivers:
National Instruments LabView
National Instruments LabWindows/CVI

* Specifications subject to change without notice.

Notes: n/a = not applicable; n/s = not specified; Note 1: Min-Max, Measured with 50 ohm termination to -2.0 V dc bus;
Note 2: Aggregate static source/sink current is 800 mA per 32 channels; Note 3: min-max, single-ended; Note 4: unterminated

I/O Characteristics: Differential
TTL I/O

DS26F31M
3.2V typ
0.32V typ

20 mA @ 0.5V
20 mA @ 0.5 V

-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

DS26F32M
0.2V min

±5.0V max
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

TTL I/O

74F125
3.4V typ

0.55V max
64 mA max
15 mA max

-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

74ACT244
-- n/a --

+5.0V max
2.0V min
0.8V max
-- n/a --
-- n/a --
-- n/a --
-- n/a --

10k ohms

Differential
ECL I/O

100324
-1.025V -0.870V1

-1.830V -1.620V1

-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

100325
-- n/a --
-- n/a --

-1.165V -0.870V3

-1.830V -1.475V3

-- n/a --
-- n/a --
-- n/a --
-- n/a --

50 ohms to -2.0V

CMOS I/O

74AC125
4.2V, 24 mA typ
0.4V, 24 mA typ

+24 mA max
-24 mA max

-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

74ACT244
-- n/a --

+5.0V max
2.0V min
0.8V max
-- n/a --
-- n/a --
-- n/a --
-- n/a --

10k ohms

Variable
Voltage I/O

-- n/s --
-1.5V to +7.0V4

-3.0V to + 4.5V4

50 mA max2

50 mA max2

0.0V to 11.0V p-p
10 mV
100 mV

-3.0V to +7.0V
50 ohms

-- n/s --
-- n/a --

-3.0V to +7.0V
-- n/a --
-- n/a --

-2.9V to +5.5V
-2.9V to +5.5V

10 mV
100 mV

> 50k ohms

LVDS I/O

DS90C031
1.14 V typ
1.07 V typ

-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

DS90C032
±200 mV max
-0.3 to 4.8 V

-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

 Output Drivers
Type

High Voltage (Voh)
Low Voltage (Vol)

Sink Current
Source Current

Output Swing
Resolution

Absolute Accuracy
Abs. Max. Volt. (Hi-Z)

Output Impedance

Input Receivers
Type

Diff. Input Volts (Vth)
Max Input Volts

Input Voltage, high (Vih)
Input Voltage low, (Vil)
Input Thrsh, high (Vth)

Input Thrsh, low (Vtl)
Resolution

Absolute Accuracy
Input Impedance

3.3V Logic I/O

74LVT125
3.2V typ

0.3V
32 mA max
-32mA max

-- n/a --
-- n/a --
-- n/a --
-- n/a --

100 ohms

74ACT244
-- n/a --

+5.0V max
2.0V min
0.8V max
-- n/a --
-- n/a --
-- n/a --
-- n/a --

10k ohms

SR2520 User's Manual 2-1

Rev. 05Interface Technology

Chapter 2: Theory of Operation

�����������������	

Theory of Operation
(Fig 2-1) The I/O board contains the stimulus, response and record logic
for 32 channels of output and 32 channels input. Figure 2-1 shows the
main components and data paths of this board. The I/O boards installed in
the SR2510 module are addressed from the 68030 microprocessor while
the I/O boards installed in the SR2520 modules are addressed from the
VXI bus as a register-based instrument, (see SR2520 User's Manual for
discussion of SR2520 principles of operation).

I/O Board

Figure 2-1.
SR2520 I/O Board Block Diagram.

SR2520 User's Manual

Interface Technology

2-2 Chapter 2: Theory of Operation

Rev. 05

(Fig 2-1) The stimulus and response memory blocks contains data
needed to generate the stimulus and expect response data patterns,
respectively. The VXI bus can read and write this memory when
the control processor is not running. When the control processor
is running, access to the VXI bus is blocked and the stimulus and
response gate arrays have exclusive read-only access to the
memory. The address counters regenerate the control processor
address on each stimulus gate array and are used to drive the
memory for the pair of stimulus and response gate arrays. Each I/
O board contains four of these address buses. However, the buses
are effectively locked together with the control processor's address
counter.

(Fig 2-1) The record memory stores the data returned by the
UUT, or the results of the data returned by the UUT and compared
to the data provided by the expected response pattern generator.
This is a read only memory for the user and can be read only
when the control processor is not running. When the control
processor is running, access to the memory by the user is blocked
and the response gate arrays have exclusive write-only access to
the memory. The record address counters are generated on each
response gate array and are effectively locked together. The
record address counter is independent of the control processor’s
address counter, which controls stimulus and response vector
sequencing.

The SR2510 Timing/Control board provides a eight phase system
clock, which is distributed throughout the SR2500 subsystem.
The actual test vector rate is the system clock divided by an
integer in the range of 1 to 65,535. These system clock cycles and
phases are available to the stimulus logic to use for the data
format delay and width parameters, and they are also available to
the response logic to define the edge and window sample timing
parameters.

In each stimulus gate array, logic is provided so the output pins,
individually or in groups, may select any phase and any cycle of
the system clock to assert the output when the NRZ data format-
ting mode is used. The assert time is synonymous with format
delay. Additional logic is provided so that the output pins may
select any other phase of any other cycle of the system clock to
define the de-assert (deny) times for the return-to data formatting
modes. The de-assert time is synonymous with format width.

Stimulus and Response Memory

Delayed Clock Generators

Record Memory

SR2520 User's Manual 2-3

Rev. 05Interface Technology

Chapter 2: Theory of Operation

For example, if the test rate is defined at 25.0 MHz, there is a single
system clock for each test vector cycle. Therefore, there are eight phases
(points, times) that are available for use with data formatting. The 40 ns
test cycle period, divided by the eight available phases, yields an edge
placement resolution of 5 ns. If the test rate is defined as 10 MHz, the
system clock is set to 20 MHz, then divided by two. This means there are
two system clocks for each test vector cycle. Therefore, there are 16
phases (points, times) that are available for use with data formatting. The
100 ns cycle period, divided by the 16 available phases, yields an edge
placement resolution of 6.25 ns. Edge placement resolution will always
fall within the range of 5-10 ns, regardless of the defined test rate.

The response gate arrays provide similar capabilities for use with edge and
window sample modes. Each response input pin can use one system clock
phase/cycle for the edge sample mode, or two system clock phase/cycles
in the window mode.

(Fig 2-2). The stimulus gate arrays, in conjunction with the stimulus
memories (output, tristate and algorithmic command) form the heart of the
SR2500 stimulus pattern generator. Each gate array is an 8 bit wide, high-
speed pattern generator and data formatter. Pattern generation is accom-
plished by outputting the contents of the stimulus RAM directly or by
algorithmically generating the data within the gate array using a high-
speed ALU state machine. Some gate arrays may be programmed for
RAM-backed pattern generation, while other gate arrays on the same card
may be programmed for algorithmic pattern generation. While any gate
array supports only one type of pattern generation during any test run, one
of the algorithmic commands instructs the ALU state machine to pass data
directly from RAM to the outputs. This allows mixing of algorithmic and
RAM-backed pattern generation on the same pins.

Algorithmic Stimulus Pattern Generator

The pattern generator within the stimulus gate array is a high-speed
programmable state machine. Instructions for this state machine are
stored in the stimulus algorithmic command memory and instruct the gate
array on a test clock-by-clock basis to either load the ALU output register
from RAM or to algorithmically modify the contents of the ALU register.
The output memory holds the clock-by-clock state of the output pins. The
tristate memory holds the clock-by-clock state of the output enable, which
allows a pin to be driven by the output memory on one clock cycle and
tristated on the next clock cycle, thus achieving a bi-directional pin. In
algorithmic mode, data patterns are defined by applying an algorithmic
function to the internal ALU register. Multiple stimulus gate arrays may
be cascaded together to create 16, 24 or 32 bit wide algorithmic patterns.

Stimulus Gate Arrays

SR2520 User's Manual

Interface Technology

2-4 Chapter 2: Theory of Operation

Rev. 05

Figure 2-2.
Stimulus Gate Array Block Diagram.

Stimulus Output Pin Formatter

Each output channel contains a pin formatter that provides the following data formats: Non Return-to-Zero
(NRZ), Return-to-Zero (RZ), Return to One (R1), Return-to-Compliment (RC), and Return-to-Inhibit (RI).
The pin formatter section of each gate array can access the available system clock cycle/phase combinations,
described in the section on Delayed Clock Generators, to define the assert and deny times for the output
channels data format.

Response Gate Arrays

(Fig 2-3). The response gate arrays, in conjunction with the response memories (expect, "don't care" and
algorithmic command) form the heart of the SR2500 expected response pattern generator, used in real-time
compare operations. Each gate array is an 8 bit wide, high-speed pattern generator. Pattern generation is
accomplished by outputting the contents of the RAM directly or by algorithmically generating the data within
the gate array using a high-speed ALU state machine. Some gate arrays may be programmed for RAM-

SR2520 User's Manual 2-5

Rev. 05Interface Technology

Chapter 2: Theory of Operation

backed pattern generation, while other gate arrays on the same card may be programmed for algorithmic
pattern generation. While any gate array supports only one type of pattern generation during any test run, one
of the algorithmic commands instructs the ALU state machine to pass data directly from RAM to the outputs.
This effectively allows mixing of algorithmic and RAM-backed pattern generation on the same pins.

Expected Response Pattern Generator

The expected pattern generator within the response gate array is a high-speed, programmable state machine.
Instructions for this state machine are stored in the response algorithmic command memory and instruct the
gate array on a test clock-by-clock basis to either load the ALU output register from RAM or to
algorithmically modify the contents of the ALU register. The expect memory holds the clock-by-clock state
of the expected response pattern. The "don't care" memory holds the clock-by-clock state of the compare
enable, which allows a pin to be disabled for compare on one clock cycle and enabled for compare on the
next clock cycle. In algorithmic mode, data patterns are defined by applying an algorithmic function to the
internal ALU register. Multiple gate arrays may be cascaded together to create 16, 24 or 32 bit wide algorith-
mic patterns.

Figure 2-3.
Response Gate Array

SR2520 User's Manual

Interface Technology

2-6 Chapter 2: Theory of Operation

Rev. 05

Response Input Formatter

The response input formatter latches the response data from the UUT and
passes it on to the response compare logic and the record control logic.

The pin formatter section of each gate array can access the available
system clock cycle/phase combinations, described previously, which are
used to define the edge and window sample times. In the edge mode, data
is sampled at the selected system clock cycle/phase. In the window mode,
data must be stable from the time when the window is opened (the first
selected system clock cycle/phase combination), to the time the window
closes (the second selected system clock cycle/phase combination).
Window compare is used for detecting signal glitches.

Response Comparator

The response Comparator logic compares the data latched by the input
formatter to the pattern generated by the response pattern generator, and
passes the result to the record control logic. A response compare signal is
generated for each test cycle, regardless of whether the real-time compare
mode is being used. These signals, one from each I/O board, are summed
on the SR2510 and used for generation of the error latch, and may also be
used for test sequence control decisions based on real-time compare
results.

Input Qualifier

The response gate arrays also contains 8 qualifier trigger registers and the
qualifier compare logic. All 8 qualifier triggers (qualifiers) are compared
to the latched input data that is passed from the input formatter on each
test cycle. The results of the qualifier compare are passed back to the
SR2510 module. The qualifier compare signals from each I/O board are
summed on the SR2510 and used by the record state machine to start and
stop data recording, provide filtered data recording, to start and stop CRC
sampling. These signals may also be used for test sequence control
decisions based on qualifier compare results.

Record Control

The record control logic in the response gate array provides two main
functions: to generate record memory addresses and to pass data to the
record memory for storing. This logic receives instructions from the
SR2510 record state machine, located in the control processor, which
determines when to record data and what data to record. After each
record operation the record memory address is incremented by one,
therefore, all data is recorded in a continuous, linear sequence. Since the
record memory is addressed separately from the stimulus and response
memories, there is no guarantee that the number of record vectors is the

SR2520 User's Manual 2-7

Rev. 05Interface Technology

Chapter 2: Theory of Operation

same as the number of stimulus and response vectors. Also, if record data
wrapping is enabled, and the number of vectors recorded exceeds the size
of the test, the oldest data in the record memory is overwritten. This will
continue until the test stops or is aborted. record memory is then rear-
ranged to provide a linear sequence of recorded data from oldest to most
recent, accessed from the first vector to the last vector, respectively.

Two types of data may be passed to the record control logic for recording;
the UUT response data latched by the input formatter, or the results of the
real-time comparison performed in the response comparator. The latter is
known as error data, or errors, and is represented as a 0 stored for each bit
where the compare matched, and a "1" stored for each bit where the
compare did not match. Selecting which data to record may be changed
from within the SR2500 test using control structures called trace se-
quences. As there are 16 levels of trace sequences, this start and stop
process of recording data may occur multiple times in a single test,
allowing invalid or inappropriate responses to be ignored.

CRC Logic

Each input pin on the SR2500 I/O board has a 16 bit register and logic
used for calculating CRC signatures, all located within the response gate
arrays. CRC calculations are controlled from the same trace sequences as
are used to control data recording. Based on matching of a trigger condi-
tion, CRC calculations may either be enabled or disabled. As there are 16
levels of trace sequences, this start and stop process of calculating CRC
signatures may occur multiple times in a single test, allowing invalid or
inappropriate samples to be ignored.

For the purpose of signature analysis, each input pin may be thought of as
a separate serial channel. So, each SR2500 I/O board has 32 independent
signature analysis channels. Enabling or disabling the CRC calculation is
performed globally within the SR2500 system using the trace sequences.
The "don't care" memory, which is used to enable individual bits for real-
time compare, is also used to dynamically enable or disable individual
CRC calculations. If CRC calculations are globally enabled, and the
individual CRC calculation is enabled ("don't care" bit set to "0"), a CRC
calculation is performed. If the individual CRC calculation is disabled
("don't care" memory set to "1"), the CRC calculation is disabled for that
channel at that test cycle. When the CRC calculation is enabled, the data
passed from the input formatter is used to update the value in the CRC
registers based on the CCITT standard communication polynomial used to
perform CRC calculations. When disabled, the data passed from the input

SR2520 User's Manual

Interface Technology

2-8 Chapter 2: Theory of Operation

Rev. 05

formatter is ignored by the calculation logic, i.e., no calculation takes
place. Data is passed to the CRC logic from the input formatter using the
same sample clocks used to record data, so timing for CRC samples is
identical to timing for record samples.

 Algorithmic Commands

The stimulus and response gate arrays each contain algorithmic pattern
generators that generate stimulus and response patterns, respectively. The
following list of algorithmic commands are common to both stimulus and
response pattern generation.

NONAlgorithmic

The Nonalgorithmic command allows the gate arrays to act as a pass
through for data from RAM to the output pins. The data that is passed
from RAM to output is also used to initialize the algorithmic register.
This register can be acted on by other algorithmic commands to modify
the data content programmatically after initialization.

INCrement

Increment the contents of the algorithmic register and pass the results to
the output pins. If algorithmic fields greater than 8 bits are used, multiple
gate arrays are interlinked. If an increment instruction causes an overflow,
the overflow is used as a carry input to the next most significant gate array
thus extending the count up to a maximum of 232 before roll over.

DECrement

Decrement the contents of the algorithmic register and pass the results to
the output pins. If algorithmic fields greater than 8 bits are used, multiple
gate arrays are interlinked. If a decrement instruction causes an under-
flow, the underflow is used as a borrow input from the next most signifi-
cant gate array thus extending the count up to a maximum of 232 before roll
over.

XOR

The XOR instruction will perform a bit-wise exclusive "ORing" of the
algorithmic register with the contents of RAM. In this case the RAM acts
as a modifier to the register and does not directly load it. In this way,
selective bits of the algorithmic register may be complemented before
passed to the output pins.

SLEFTZero

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
fill the LSB with "0" and pass the results to the output pins. If algorithmic

SR2520 User's Manual 2-9

Rev. 05Interface Technology

Chapter 2: Theory of Operation

fields greater than 8 bits are used, multiple gate arrays are interlinked. In
this case, the MSB output of a less significant gate array is used as a LSB
input to the next most significant gate array, thus extending the shift to a
maximum 32 bits.

SLEFTOne

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
fill the LSB with "1" and pass the results to the output pins. If algorithmic
fields greater than 8 bits are used, multiple gate arrays are interlinked. In
this case, the MSB output of a less significant gate array is used as a LSB
input to the next most significant gate array, thus extending the shift to a
maximum 32 bits.

SLEFTComplement

Shift the contents of the algorithmic register left (LSB to MSB) one bit,
complement the LSB and pass the results to the output pins. If algorith-
mic fields greater than 8 bits are used, multiple gate arrays are interlinked.
In this case, the MSB output of a less significant gate array is used as a
LSB input to the next most significant gate array, thus extending the shift
to a maximum 32 bits.

RLEFT

Rotate the contents of the algorithmic register left (LSB to MSB) one bit,
wrap the MSB to the LSB and pass the results to the output pins. If
algorithmic fields greater than 8 bits are used, multiple gate arrays are
interlinked. In this case, the MSB output of a less significant gate array is
used as a LSB input to the next most significant gate array and the MSB
of the most significant gate array is wrapped to the LSB of the least
significant gate array, thus extending the rotate to a maximum 32 bits.

SRIGHTZero

Shift the contents of the algorithmic register right (MSB to LSB) one bit,
fill the MSB with "0" and pass the results to the output pins. If algorith-
mic fields greater than 8 bits are used, multiple gate arrays are interlinked.
In this case, the LSB output of a more significant gate array is used as a
MSB input to the next least significant gate array and the LSB of the least
significant gate array is wrapped to the MSB of the most significant gate
array, thus extending the rotate to a maximum 32 bits.

The SR2510 I/O Boards have separate I/O pattern generator boards and
driver/receiver boards (D/R boards). Each I/O board provides two con-
nectors of 16 stimulus channels and 16 response channels for connecting
to the D/R boards. This means that each I/O board can support two logic

Driver/Receiver Board

SR2520 User's Manual

Interface Technology

2-10 Chapter 2: Theory of Operation

Rev. 05

families, in groups of 16 channels each. The D/R boards come in four
different logic types, allowing the user to configure the SR2500 modules
with the specific logic families required for the test system. On the
stimulus side, the I/O pattern generator boards provide discrete TTL I/O
signals to D/R boards, and the D/R boards translate the TTL I/O signals to
the appropriate logic levels. For receiving, the D/R board accepts the
UUT response and translates the UUT logic level to the TTL level re-
quired by the I/O board.

TTL Driver/Receiver Logic

(Fig 2-4) The TTL D/R board provides 16 channels of single ended TTL
to/from the UUT. Separate output and input pins are used (32 signal pins),
with a ground return for each signal. Bi-directional signals are supported
by connecting the output and input pins together. Each TTL driver
(74F125) has a 100 ohm resistor in series with the output. This provides
100 ohm back matched termination as well as additional short circuit and
over voltage protection. The receiver (74ACT244) provides 10k pull up/
down resistors on it's input.

CMOS Driver/Receiver Logic

(Fig 2-5) The CMOS D/R board provides 16 channels of single ended
CMOS to/from the UUT. Separate output and input pins are used (32
signal pins), with a ground return for each signal. Bi-directional signals
are supported by connecting the output and input pins together. Each
CMOS driver (74ACT125) has a 100 ohm resistor in series with the
output. This provides 100 ohm back matched termination as well as
additional short circuit and over voltage protection. The receiver
(74ACT244) provides 10k pull up/down resistors on it's input.

Differential TTL Driver/Receiver Logic

(Fig 2-6) The Differential TTL D/R board provides 16 channels of
differential TTL to/from the UUT. Separate output and input pins are
used (32 signal pins). Bi-directional signals are not supported directly on
the D/R board, however, 16 tristate control signals are also brought out the
differential TTL D/R board. These signals may be used on the UUT, or in
a UUT adapter, to provide bi-directional control.

Differential ECL Driver/Receiver Logic

(Fig 2-7) The Differential ECL D/R board provides 16 channels of
differential ECL to/from the UUT. Separate output and input pins are
used (32 signal pins). Bi-directional signals are not supported directly on
the D/R board, however, 16 tristate control signals are also brought out the
differential ECL D/R board. These signals may be used on the UUT, or in
a UUT adapter, to provide bi-directional control. Each side of the receiver
input (100325) provides 50 ohm resistors terminated to -2.0V.

Change 2

SR2520 User's Manual 2-11

Rev. 05Interface Technology

Chapter 2: Theory of Operation

Programmable Driver / Receiver Logic

(Fig 2-8) The programmable, (variable voltage) D/R board (VV D/R) provides 32 bi-directional channels of
I/O where the V

OH
 and V

OL
 levels are programmable over a range of -3V to +7V, and the V

TH
 and V

TL
 levels

are programmable over a range of -2.9 to +5.5V. The V
OH

, V
OL

, V
TH

 and V
TL

 voltages are supplied external to
the VV D/R board. Unlike the fixed level D/R boards, the VV D/R does not provide separate output and
input pins. All pins are bi-directional signals with a ground return for each signal. The driver (EDGE649) is
source terminated with a 50 ohm series resistor, and the receiver (EDGE649) provides a 50 ohm damping
resistor in series with its input. The receiver is a dual-threshold part, capable of differentiating between a
high input level, a low input level and an indeterminate (tristated) input. Additional logic in the form of a
multiplexer and a oscillator are added to the output of each input receiver to allow the SR2500 VV D/R to
detect/record if the response was valid or invalid. The truth table in Fig 2-8 indicates the various states that
can be detected. If the detected state is other than the state that is tested for, the comparison will fail, the error
latch will be set, and the record memory will store a "1" for each enable input bit that failed the test. The
states that can be tested are a valid high and a valid low.

Figure 2-4. TTL Single Ended Driver/Receiver,
(16 per D/R Board).

Figure 2-5. CMOS Single Ended Driver/Receiver,
(16 per D/R Board).

Change 9

Figure 2-6. Differential TTL Driver/Receiver,
(16 per D/R Board).

���'�(�

$�)���
��� ""��)*���	+

�	�	��
���",(!
���'�(!

!""�
--$���������

�

$
,��	����
�

"�

"�

Output Enables Are In Groups of Four

Tri-state bit 0
Tri-state bit 4
Tri-state bit 8
Tri-state bit 12
Tri-state bit 16
Tri-state bit 20
Tri-state bit 24
Tri-state bit 28

enables
enables
enables
enables
enables
enables
enables
enables

bits 0-3
bits 4-7
bits 8-11
bits 12-15
bits 16-19
bits 20-23
bits 24-27
bits 28-31

�����
��� ��	�	

$
��	��

��0�

��0�

)�*

--$���������

$�)���
��� ""��)*���	+

����-��

����-��
��� ��	�	

$
��	��

��0�

��0�

)�*

--$���������

$�)���
��� ""��)*���	+

����-��

SR2520 User's Manual

Interface Technology

2-12 Chapter 2: Theory of Operation

Rev. 05

Figure 2-7.
Differential ECL Driver/Receiver,

(16 per D/R Board).

Figure 2-8.
Programmable Driver/Receiver,

 (32 per D/R Board).

$
��	��
������

$�)���
��� ""��)*���	+

�	�	
������

 "�
 "�

������
--$���������

�*

� � .

"
!
"
!

"
!
!
"

/��
0
1�
��+����
�	��
��&	�
+

���

*1�

*��

�

�

*1�� *���

*1� *��

�	�	

$
��	��

�)�

�

�

��

!	

.

�

�

--$���������

$�)���
��� ""��)*���	+

�+2����

Change 5

Figure 2-9. LVDS Driver/Receiver,
(16 per D/R Board).

Output Enables Are In Groups of Four

Tri-stare bit 0
Tri-stare bit 4
Tri-stare bit 8
Tri-stare bit 12
Tri-stare bit 16
Tri-stare bit 20
Tri-stare bit 24
Tri-stare bit 28

enables
enables
enables
enables
enables
enables
enables
enables

bits 0-3
bits 4-7
bits 8-11
bits 12-15
bits 16-19
bits 20-23
bits 24-27
bits 28-31

LVDS Driver/Receiver Logic

The LVDS D/R board provides 16 channels of
LVDS to/from the UUT. Separate output and
input pins are used (32 signal pins). Bidirec-
tional pins are not supported directly on the D/R
board, however the user may hardwire the input
and outputs signal pins together to have bidirec-
tional capability. Although single bit bidirec-
tional pins are possible, outputs are enabled in
groups of 4 (see Fig 2-9).

2"�"(�

$�)���
��� ""��)*���	+

�	�	��
���",(!
2"�"(!

!""�
--$���������

�

$
,��	����
�

"�

"�

SR2520 User's Manual 2-13

Rev. 05Interface Technology

Chapter 2: Theory of Operation

Figure 2-10. 3.3V Single Ended Driver/Receiver,
(16 per D/R Board).

���*-��
��� ��	�	

$
��	��

��0�

--$���������

$�)���
��� ""��)*���	+

����-��

3.3 Volt Driver/Receiver Logic

(Fig 2-10) The 3.3V D/R board provides 16 channels
of single ended logic to/from the UUT. Separate
output and input pins are used (32 signal pins), with a
ground return for each signal. Bi-directional signals
are supported by connecting the output and input pins
together. Each 3.3V driver (74LVT125) has a 100
ohm resistor in series with the output. This provides
100 ohm back matched termination as well as addi-
tional short circuit and over voltage protection. The
receiver (74ACT244) has 10k pull down resistors on
it's input. Both the drivers and receivers are 5V
tolerant.

Change 9

SR2520 User's Manual

Interface Technology

2-14 Chapter 2: Theory of Operation

Rev. 05

(THIS PAGE INTENTIONALLY LEFT BLANK)

Change 9

SR2520 User's Manual 3-1

Rev. 05Interface Technology

Chapter 3: Installation

�����������������

Installation

Figure 3-1
Address Switches Set
to Logical Address 12.

Note

The logical addresses of the
SR2520 Expansion Modules must
be set to a higher value than the
logical address of the SR2510
Main Module. If there is more than
one SR2510 in a VXI chassis,
then the SR2520's with addresses
between any 2 SR2510's, will be
part of the lower addressed
SR2510's system. The SR2520
with the lowest numbered logical
address is Expansion Module #1.
The next highest SR2520 logical
address is Expansion Module #2.
The highest SR2520 logical ad-
dress is the most significant Ex-
pansion Module number. To verify
all Expansion Modules have been
recognized by the system, send a
“*IDN?” query command.

Scope of Chapter This chapter contains instructions for unpacking, inspecting, installing,
and checking out the SR2520 Expansion Module.

Your SR2520 was thoroughly inspected and tested before shipment from
the factory and is ready for immediate operation once all installation
procedures have been completed. Carefully remove the instrument from
its shipping carton and check for any obvious damage that may have
occurred during shipment. If damage is found, report it to the freight
carrier immediately. Interface Technology is not liable for damage that
may have occurred during transit. Save the shipping carton and all pack-
ing material for possible future use.

Logical Addressing

Before installation, the logical address for the SR2520 Expansion Module
must be set. Set the address switches according to the requirements of the
Slot-0 controller. The address switches are numbered from one to eight.
Switch 1 corresponds to the least significant bit (LSB) of the logical
address. The address is entered in binary, where an ON switch sets the
corresponding bit to 0 (Fig 3-1).

Unpacking and Inspection

Installation

� � � � � � �

�,

��� ���

�����

�		
���
�������

���
�	��

�
���
�����

�������������
��������
�

������������SR2520 Module

3-2 SR2520 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

The SR2520 Expansion Module must be mounted immediately to the right
of the SR2510 Main Module. The SR2500 uses bus master functions to
identify the I/O boards installed in the system, so all SR2500 modules
must be located in the same chassis.

The SR2520 Expansion Module does not use any of the IACK or BG3
signals. These signals are passed through. The user may remove or
install the jumpers for these VXI slots as required.

For SR2520 modules configured with more 32 I/O channels, additional 5
Vdc power is required from an external source. The external power is
supplied to the Aux. Power connector located on the module front panel,
see Fig. 3-2. The amount of operating current required from the external
power supply is directly proportional to the number of modules installed.
The SR2520 can supply enough internal 5 Vdc power to operate up to 32
I/O channels (one I/O board), independently of external power. When
more than 32 channels/module are used, approximately 7.5 amperes is
required for each additional 32 channels (e.g., a 64 channel module
requires 7.5 A from an external 5 Vdc power supply; a 96 channel module
requires 15 A).

Slot Dependency

Backplane Jumpers

5 Vdc External Power
Requirements

SR2520 User's Manual 3-3

Rev. 05Interface Technology

Chapter 3: Installation

Figure 3-2.
Connection of External 5 Vdc Operating Power

-
�

-
	

.
	

.
�

��
���

3���������������
4
�	�
���5

*����������	1�5
������+��	
	�
��
*����������5
���/�	+��
����)6�
��
��+���+��
����)6�
��

 ��+�7
�8"7� �)�,"7!� ��+�7
("���#6����!%
 "���
 "���

8 ��

9�+

�)�

� � � � � � � � � �� �� �

�����
�������
������

�	,
��!�+

/	��!�-
�����

�*��-!�

���!13������,

����0��,

-��22����,

2�-���,

����0��	-

�,�	-����2�

2,+
2,+
2,+
2,+
2,+
2,+
2,+
2,+

/�-
�
�
�
�
�

�
�

�	

���

������ !"

�����
�������
������

�	,
��!�+

/	��!�-
�����

�*��-!�

���!13������,

����0��,

-��22����,

2�-���,

����0��	-

�,�	-����2�

2,+
2,+
2,+
2,+
2,+
2,+
2,+
2,+

/�-
�
�
�
�
�

�
�

�	

���

������ !"

�

�

����������	
/�
����0

	��������

���)1�������	���

�"2,3%$+����)1�������	���

����������

�������		�	 �������		�	
	�!��� 	�!�!�

���������	
���	���������
���������	
������������������������������	�������������
�����������������������
�
��������	���������� �!������� �!��
��"��������������������� �����

��#��$� �!�%���

Change 4

Power Up Sequencing

Note

It does not matter the order in which the external
power supply and the VXI chassis are powered
up, as long as both are on and stable when the
first SCPI command is sent to the SR2510.

3-4 SR2520 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

SR2510 Main Module Fully
Mounted in Mainframe;

SR2520 Expansion Module Partially
Installed.

SR2510 and SR2520 Modules
Both Installed in Mainframe;

Master and Slave Connectors Mated.

��������	
���	����	����	��

������	����
��������	
�

�	���
��������

��� !"
#$����
��%

������	����
��������	
�

��	&�
��������

��� �"
#$����
��%

������	����
��������	
�

�	���
��������

��� !"
#$����
��%

������	����
��������	
�

��	&�
��������

��� �"
#$����
��%

��������	
���	����	����	��

Figure 3-3. Interconnect Between SR2510 and SR2520, Top View.

Main and Expansion Module Interconnect

All interconnections between the SR2510 Main Module and SR2520 Expansion Modules are made by means
of the VXI backplane and by a special connector at the side of the module. Interconnections are completed
whenever Expansion Modules are added to the system. No additional cabling between modules is required.
The second, and subsequent, SR2520 modules are connected in a similar manner.

SR2520 User's Manual 3-5

Rev. 05Interface Technology

Chapter 3: Installation

��	&����������

���	����&������������3��
�
��	&���������������	����)�	���
��������������� !"7

9�
+��3
�

9�
+��3
�

���������������

$��

������

���������������

��	 ����

����

������

$��

��	

0����4��9�
+��3
�
#����	�	�%

0����4��9�
+��3
�
#����	�	�%

�	������������

���	����&������������3��
�
������������:;���+�������+���7

���������������

���������������

������
������	����

������
����	����

Figure 3-4. SR2510 and SR2520 Interconnect Connectors.

3-6 SR2520 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Each SR2520 modules can contain up to three I/O Boards, each of
which provides 32 I/O channels. As shipped from the factory, the
SR2520 will contain one, two, or three I/O Boards, depending on
the customer's order. If less than three I/O Boards are supplied,
cover plates are installed over the unused connector holes in the
front panel. Additional I/O Boards can be ordered and installed
by the user to expand system capability, at any time.

To install additional I/O Boards, you will need the following tools
and materials:

o screwdriver, No.1 Phillips
o screwdriver, 1/8" blade (pocket type)
o hex nut driver, 3/16"

To install a 2nd I/O Board in an SR2520 module, proceed as
follows:

1. Turn VXI chassis power OFF. Disconnect all external cables
from front panel of SR2520 module.

CAUTION

If there are SR2520 modules installed in the VXI chassis on the right
hand side of the module to which the additional I/O Board is to be
installed, these modules must be removed first to avoid damage to
the interconnects between modules.

2. Observing the caution above, remove the SR2520 module
from the VXI chassis.

3. Place the module on a clean workbench, orient the module to
gain access to the right side cover, see Fig 3-5.

4. Remove the 14 #4-40 x .14" Phillips flat head screws securing
the cover to the module; 11 screws are located on the side of
the module and three more screws are located on the front of
the module. The screws to be removed are indicated by the
heavy circles in Fig 3-5.

5. Remove the right side cover from the SR2520 module.

6. Remove the 2 cover plates from the front of the module for
the I/O Board to be installed ... i.e., cover plates for I/O Board
2 or cover plates for I/O Board 3 are secured to the front panel
by four No.4-40 x 1/4" Phillips flat head screws, see Fig 3-6
(note: in Fig 3-6, these screws are shown, blown away from
the module, directly to the left of the two Interface Boards).

Installing I/O Boards

Required Equipment

Procedure ... Install I/O Bd No.2

SR2520 User's Manual 3-7

Rev. 05Interface Technology

Chapter 3: Installation

7. See Fig 3-6 and Fig. 3-7. Remove the three spacer stacks at positions
1, 2, and 3, each consisting of two 1/2" and one 7/16" hex spacers (see
Fig. 3-7a1). Also remove the No.4-40 x 1/4" Phillips pan head screw,
split lock washer and nylon washer at position 4 of the I/O Board (see
Fig 3-6 and Fig 3-7b1).

8. See Fig 3-6. Loosen, but do not remove, the three No.4-40 x 1/4"
Phillips flat head mounting screws securing the Interface Board to the
module front panel. (note: screws indicated by black triangles in Fig
3-6). Also loosen, but do not remove, the two small slotted head
retainer screws securing the module latches to the module, see Fig 3-
5. The front panel should now swing out slightly, away from the
module, to allow access to install the I/O Board.

9. See Fig 3-6.Carefully place the new Expansion I/O Board, with the
Interface Board(s) attached, in position inside the module.

10. See Fig 3-6. Connect the ribbon cable to J2; connect the mini-
motherboard connector, and attach the power connector at J6 of the
newly installed I/O Board.

11. See Fig 3-6 and Fig 3-7a2. Install the three spacer stacks at positions
1, 2, and 3 each consisting of one 1/2" and one 7/16" hex spacers (see
Fig 5-8a2). Also install a 7/16" hex spacer and the No.4-40 x 1/4"
Phillips pan head screw, split lock washer and nylon washer at posi-
tion 4 of the I/O Board (see Fig 3-6 and Fig 3-7b2).

12. See Fig 3-6. Install the four No.4-40 x 1/4" flat head Phillips screws
securing the Interface Boards of the new I/O Board to the front panel

13. Retighten the three No.4-40 x 1/4" Phillips flat head mounting screws
securing the Interface Board to the module front panel that were
loosened in step 8. Also retighten the two small slotted head retainer
screws securing the module latches to the module that were loosened
in step 8.

14. Reinstall the module cover. Reinstall and tighten the 14 mounting
screws securing the cover to the module, see Fig 3-5.

The procedure for installing I/O Board No.3 is, essentially, the same as
that for installing I/O Board No.2, except for the arrangement of the
spacer stacks at positions 1-3 and position 4, as depicted in Figures 3a and
3b, respectively. Use these figures as a guideline to ensure correct I/O
Board spacing inside the module.

Note when installing I/O Boards that the power supplied to connector J6
of I/O Board No.1 is taken from the Power Interface Board (see lower part
of Fig 3-6), while power supplied to the same connector (J6) of I/O

Procedure ... Install I/O Bd No.3

3-8
S

R
2520 U

ser's M
an

u
al

R
ev. 05

In
terface T

ech
n

o
lo

g
y

C
h

ap
ter 3: In

stallatio
n

Boards No.2 and No.3 is taken from the Aux Power Cable going to the Aux Power connector on the module front panel. If I/O Boards No.2
and/or No.3 are not used, the unused connectors of the Aux Power Cable will be tied off and tucked loosely inside the module.

Also note that the ribbon cable (upper part of Fig 3-6) has a separate connector for each of the I/O Boards. Unused connectors on the ribbon
cable are left unterminated.

Figure 3-5. Cover Screws

�����
������

�	

���

���
������
���	
��

���������

 �������	����!�
�""
�������������#$�%�&$"$'�(�#)$*
#''�	��&���������������+��	���
��

����
�����������������!�

�������������,�%�&$"$'�(�#)$*
#''�	��&���������������+��	���
��

� ,-,'��
������� � ,-,'� �������	�����

��	.��
�����

 ������

��
�

��	.��
�����

 ������

��
�

S
R

2520 U
ser's M

an
u

al
3-9

R
ev. 05

In
terface T

ech
n

o
lo

g
y

C
h

ap
ter 3: In

stallatio
n

Figure 3-6. I/O Board Mounting Hardware.

� ,-#'
�
�������

� ,-,'� �������	�����

����
/�������
	

����
/�������
	

���
���������

����"�����
0��
	

 �00�����0��

��
1�����

��������

� ,-,'������1����

� ,-,'��������

���

����
/���
���
	

�)2����
	

����
/�������
	
��.��������
��
%�&$"$'�(�#)$*

��������������+��	���
�
3$�������4

���
�����
/�����	&

5#
5,

56

�#

���
�����
/�����	&

5#
5,

56

�#

�������������

��

�������������

�������������

�������������

���������	�
��	

���������	�
��	

�	������	�
��	

�	������	�
��	

�(�����������
	
��.��������
��
%�&$"$'�(�#)$*

��������������+��	���
�
36�������4

 �00�����0��
��

��

��

56

57

57

57

57

 �������	���/����	�

�.(����
���0��

#),*������

8)#7*������

8)#7*������

8)#7*������

�������&6�
��
�9������

�������&60
��
�9������

%���:��%���9
�����������

�����
������

�	

���

���
������
���	
��

���������

3-10 SR2520 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Figure 3-7b.
Buildup of Standoff Spacers at Position 4 for Configurations of One, Two, and Three I/O Boards.

Figure 3-7a.
Buildup of Standoff Spacers at Positions 1-3 for Configurations of One, Two, and Three I/O Boards.

������������	
��� �����
�����	
���� ��������������	
����

 �������	����!�

���������	

8)#7*������

�)2����
	�%�&#

8)#7*������

8)#7*������

 �������	����!�

���������	

8)#7*������

8)#7*������

�(���������	

 �������	����!�

���������	

8)#7*������

%�&$"$'�(�#)$*;�#''�	��&
��������������+��	���
�

���������	���������	

���������	

�)2����
	�%�&,

�)2����
	�%�&6

�)2����
	�%�&#

�)2����
	�%�&,

�)2����
	�%�&#

������������	
��� ������
�����	
���� ��������������	
����

���������	

8)#7*������

�)2����
	�%�&#

8)#7*������

���������	

8)#7*������

���������	

�)2����
	�%�&,

�)2����
	�%�&6

�)2����
	�%�&#

�)2����
	�%�&,

�)2����
	�%�&#

%�&$"$'�(�#)$*
�������������+��	���
�;
%�&$���������������
;
��	�%�&$�%<����=����

��/����	����!�
 ��/����	����!�
 ��/����	����!�

��/����	����!�
 ��/����	����!�
 ��/����	����!�

%�&$"$'�(�#)$*;�#''�	��&
��������������+��	���
�

%�&$"$'�(�#)$*;�#''�	��&
��������������+��	���
�

%�&$"$'�(�#)$*
�������������+��	���
�;
%�&$���������������
;
��	�%�&$�%<����=����

%�&$"$'�(�#)$*
�������������+��	���
�;
%�&$���������������
;
��	�%�&$�%<����=����

�(���������	 �(���������	

�(���������	 �(���������	 �(���������	

SR2520 User's Manual 3-11

Rev. 05Interface Technology

Chapter 3: Installation

Mating Connector for SR2520
TTL, 3.3 V, or CMOS, Ch. 00-15.

3M Company Part No. 10168-6000EC

Figure 3-8. SR2510 Signal Connector Pinouts, TTL, 3.3 V, or CMOS, Ch. 00-15.

�����
������

�	

���

���
������
���	
��

���������

�4���($3)��(5�

�4���($3)��(5!

�4���($3)��(5

�(2,6�����7��(31,��3'&2$2,

�4���($3)��(5
�8���.��

�$��
���"","<
�$��
���"=,!

�(> �(>

�((�((

�(� �(�

�(! �(!

�(" �("

��2 ��2

��= ��=

��< ��<

��' ��'

�� ��

��> ��>

��(��(

��� ���

��! ��!

��" ��"

�!2 �!2

�!= �!=

�!< �!<

�!' �!'

�! �!

�!> �!>

�!(�!(

�!� �!�

�!! �!!

�!" �!"

�"2 �"2

�"= �"=

�"< �"<

�"' �"'

�" �"

�"> �">

�"(�"(

�"� �"�

�"! �"!

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

6���-��+

*������"" ������""

*������"! ������"!

*������"� ������"�

*������"(������"(

*������"> ������">

*������" ������"

*������"' ������"'

*������"< ������"<

*������"= ������"=

*������"2 ������"2

*������!" ������!"

*������!! ������!!

*������!� ������!�

*������!(������!(

*������!> ������!>

*������! ������!

6���-��+

Change 9

Note

Connector shown as viewed from
front of module.

3-12 SR2520 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Figure 3-9. SR2520 Signal Connector Pinouts, TTL, 3.3 V, or CMOS, Ch. 16-31.

Mating Connector for SR2520
TTL, 3.3 V, or CMOS, Ch. 16-31.

3M Company Part No. 10168-6000EC

�����
������

�	

���

���
������
���	
��

���������

�4���($3)��(5�

�4���($3)��(5!

�4���($3)��(5

�(2,6�����7��(31,��3'&2$2,

�4���($3)��(5
�8���. �

�$��
���!',�>
�$��
���� ,(!

�(> �(>

�((�((

�(� �(�

�(! �(!

�(" �("

��2 ��2

��= ��=

��< ��<

��' ��'

�� ��

��> ��>

��(��(

��� ���

��! ��!

��" ��"

�!2 �!2

�!= �!=

�!< �!<

�!' �!'

�! �!

�!> �!>

�!(�!(

�!� �!�

�!! �!!

�!" �!"

�"2 �"2

�"= �"=

�"< �"<

�"' �"'

�" �"

�"> �">

�"(�"(

�"� �"�

�"! �"!

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

6���-��+

*������!' ������!'

*������!< ������!<

*������!= ������!=

*������!2 ������!2

*�������" �������"

*�������! �������!

*�������� ��������

*�������(�������(

*�������> �������>

*������� �������

*�������' �������'

*�������< �������<

*�������= �������=

*�������2 �������2

*������(" ������("

*������(! ������(!

6���-��+

Note

Connector shown as viewed from
front of module.

Change 9

SR2520 User's Manual 3-13

Rev. 05Interface Technology

Chapter 3: Installation

Mating Connector for SR2520
Differential TTL and LVDS, Ch. 00-15.

3M Company Part No. 10168-6000EC

Figure 3-10. SR2520 Signal Connector Pinouts, Differential TTL, and LVDS, Ch. 00-15.

Change 4

Note

Connector shown as viewed from
front of module.

�4���($3)��(5
�8���.��

�(> �(>
�((�((
�(� �(�
�(! �(!
�(" �("
��2 ��2
��= ��=
��< ��<
��' ��'
�� ��
��> ��>
��(��(
��� ���
��! ��!
��" ��"
�!2 �!2
�!= �!=
�!< �!<
�!' �!'
�! �!
�!> �!>
�!(�!(
�!� �!�
�!! �!!
�!" �!"
�"2 �"2
�"= �"=
�"< �"<
�"' �"'
�" �"
�"> �">
�"(�"(
�"� �"�
�"! �"!

9�+

������""

������"!

������"�

������"(

������">

������"

������"'

������"<

������"=

������"2

������!"

������!!

������!�

������!(

������!>

������!

*������""

*������"!

*������"�

*������"(

*������">

*������"

*�����"'

*������"<

*������"=

*������"2

*������!"

*������!!

*������!�

*������!(

*������!>

*������!

9�+

9�+

������""

������"!

������"�

������"(

������">

������"

������"'

������"<

������"=

������"2

������!"

������!!

������!�

������!(

������!>

������!

*������""

*������"!

*������"�

*������"(

*������">

*������"

*�����"'

*������"<

*������"=

*������"2

*������!"

*������!!

*������!�

*������!(

*������!>

*������!

9�+

4�

�����
������

�	

���

���
������
���	
��

���������

�4���($3)��(5�

�4���($3)��(5!

�4���($3)��(5

3-14 SR2520 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Mating Connector for SR2520
Differential TTL and LVDS, Ch. 16-31.

3M Company Part No. 10168-6000EC

Figure 3-11. SR2520 Signal Connector Pinouts, Differential TTL and LVDS, Ch. 16-31.

Change 4

Note

Connector shown as viewed from
front of module.

�4���($3)��(5
�8���. �

�(> �(>
�((�((
�(� �(�
�(! �(!
�(" �("
��2 ��2
��= ��=
��< ��<
��' ��'
�� ��
��> ��>
��(��(
��� ���
��! ��!
��" ��"
�!2 �!2
�!= �!=
�!< �!<
�!' �!'
�! �!
�!> �!>
�!(�!(
�!� �!�
�!! �!!
�!" �!"
�"2 �"2
�"= �"=
�"< �"<
�"' �"'
�" �"
�"> �">
�"(�"(
�"� �"�
�"! �"!

9�+

������!'

������!<

������!=

������!2

�������"

�������!

��������

�������(

�������>

�������

�������'

�������<

�������=

�������2

������("

������(!

*������!'

*������!<

*������!=

*������!2

*�������"

*�������!

*�������

*�������(

*�������>

*�������

*�������'

*�������<

*�������=

*�������2

*������("

*������(!

9�+

9�+

������!'

������!<

������!=

������!2

�������"

�������!

��������

�������(

�������>

�������

�������'

�������<

�������=

�������2

������("

������(!

*������!'

*������!<

*������!=

*������!2

*�������"

*�������!

*�������

*�������(

*�������>

*�������

*�������'

*�������<

*�������=

*�������2

*������("

*������(!

9�+

4

�����
������

�	

���

���
������
���	
��

���������

�4���($3)��(5�

�4���($3)��(5!

�4���($3)��(5

SR2520 User's Manual 3-15

Rev. 05Interface Technology

Chapter 3: Installation

Mating Connector for SR2520
ECL I/O Connector, Ch. 00-15.

3M Company Part No. 101AO-6000EC

Figure 3-12. SR2520 Signal Connector Pinouts, Differential ECL, Ch. 00-15.

Change 4

�����
������

�	

���

���
������
���	
��

���������

�4���($3)��(5�

�4���($3)��(5!

�4���($3)��(5

'=
''
'>
'�
'"
 =
 '
 >
 �
 "
>=
>'
>>
>�
>"
(=
('
(>
(�
("
�=
�'
�>
��
�"
!=
!'
!(
!�
!"
"=
"'
">
"�

<"
<�
<>
<'
<=
="
=�
=>
='
==
2"
2�
2>
2'
2=
!"" 9�+

9�+
�����#! %8
$
��	��#! %8
*�����#! %8

'<
'
'(
'!
 2
 <

 (
 !
>2
><
>
>(
>!
(2
(<
(
((
(!
�2
�<
�
�(
�!
!2
!<
!
!(
!!
"2
"<
"
"(
"!

'2
<!
<(
<
<<
<2
=!
=(
=
=<
=2
2!
2(
2
2<
229�+

9�+
�����#! %,

$
��	��#! %,
*�����#! %,
�����#!>%,

$
��	��#!>%,
*�����#!>%,
�����#!(%,

$
��	��#!(%,
*�����#!(%,
�����#!�%,

$
��	��#!�%,
*�����#!�%,
�����#!!%,

$
��	��#!!%,
*�����#!!%,
�����#!"%,

$
��	��#!"%,
*�����#!"%,
�����#"2%,

$
��	��#"2%,
*�����#"2%,
�����#"=%,

$
��	��#"=%,
*�����#"=%,
�����#"<%,

$
��	��#"<%,
*�����#"<%,
�����#"'%,

$
��	��#"'%,
*�����#"'%,
�����#" %,

$
��	��#" %,
*�����#" %,
�����#">%,

$
��	��#">%,
*�����#">%,
�����#"(%,

$
��	��#"(%,
*�����#"(%,
�����#"�%,

$
��	��#"�%,
*�����#"�%,
�����#"!%,

$
��	��#"!%,
*�����#"!%,
�����#""%,

$
��	��#""%,
*�����#""%,

�����#!>%8
$
��	��#!>%8
*�����#!>%8
�����#!(%8
$
��	��#!(%8
*�����#!(%8
�����#!�%8
$
��	��#!�%8
*�����#!�%8
�����#!!%8
$
��	��#!!%8
*�����#!!%8
�����#!"%8
$
��	��#!"%8
*�����#!"%8
�����#"2%8
$
��	��#"2%8
*�����#"2%8
�����#"=%8
$
��	��#"=%8
*�����#"=%8
�����#"<%8
$
��	��#"<%8
*�����#"<%8
�����#"'%8
$
��	��#"'%8
*�����#"'%8
�����#" %8
$
��	��#" %8
*�����#" %8
�����#">%8
$
��	��#">%8
*�����#">%8
�����#"(%8
$
��	��#"(%8
*�����#"(%8
�����#"�%8
$
��	��#"�%8
*�����#"�%8
�����#"!%8
$
��	��#"!%8
*�����#"!%8
�����#""%8
$
��	��#""%8
*�����#""%8

�4���($3)��(5
�85���.��

Note

Connector shown as viewed from
front of module.

3-16 SR2520 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Figure 3-13. SR2520 Signal Connector Pinouts, Differential ECL, Ch. 16-31.

Mating Connector for SR2510
ECL I/O Connector, Ch. 16-31.

3M Company Part No. 101AO-
6000EC

Change 4

�����
������

�	

���

���
������
���	
��

���������

'=
''
'>
'�
'"
 =
 '
 >
 �
 "
>=
>'
>>
>�
>"
(=
('
(>
(�
("
�=
�'
�>
��
�"
!=
!'
!(
!�
!"
"=
"'
">
"�

<"
<�
<>
<'
<=
="
=�
=>
='
==
2"
2�
2>
2'
2=
!"" 9�+

9�+
�����#(!%8
$
��	��#(!%8
*�����#(!%8

'<
'
'(
'!
 2
 <

 (
 !
>2
><
>
>(
>!
(2
(<
(
((
(!
�2
�<
�
�(
�!
!2
!<
!
!(
!!
"2
"<
"
"(
"!

'2
<!
<(
<
<<
<2
=!
=(
=
=<
=2
2!
2(
2
2<
229�+

9�+
�����#(!%,

$
��	��#(!%,
*�����#(!%,
�����#("%,

$
��	��#("%,
*�����#("%,
�����#�2%,

$
��	��#�2%,
*�����#�2%,
�����#�=%,

$
��	��#�=%,
*�����#�=%,
�����#�<%,

$
��	��#�<%,
*�����#�<%,
�����#�'%,

$
��	��#�'%,
*�����#�'%,
�����#� %,

$
��	��#� %,
*�����#� %,
�����#�>%,

$
��	��#�>%,
*�����#�>%,
�����#�(%,

$
��	��#�(%,
*�����#�(%,
�����#��%,

$
��	��#��%,
*�����#��%,
�����#�!%,

$
��	��#�!%,
*�����#�!%,
�����#�"%,

$
��	��#�"%,
*�����#�"%,
�����#!2%,

$
��	��#!2%,
*�����#!2%,
�����#!=%,

$
��	��#!=%,
*�����#!=%,
�����#!<%,

$
��	��#!<%,
*�����#!<%,
�����#!'%,

$
��	��#!'%,
*�����#!'%,

�����#("%8
$
��	��#("%8
*�����#("%8
�����#�2%8
$
��	��#�2%8
*�����#�2%8
�����#�=%8
$
��	��#�=%8
*�����#�=%8
�����#�<%8
$
��	��#�<%8
*�����#�<%8
�����#�'%8
$
��	��#�'%8
*�����#�'%8
�����#� %8
$
��	��#� %8
*�����#� %8
�����#�>%8
$
��	��#�>%8
*�����#�>%8
�����#�(%8
$
��	��#�(%8
*�����#�(%8
�����#��%8
$
��	��#��%8
*�����#��%8
�����#�!%8
$
��	��#�!%8
*�����#�!%8
�����#�"%8
$
��	��#�"%8
*�����#�"%8
�����#!2%8
$
��	��#!2%8
*�����#!2%8
�����#!=%8
$
��	��#!=%8
*�����#!=%8
�����#!<%8
$
��	��#!<%8
*�����#!<%8
�����#!'%8
$
��	��#!'%8
*�����#!'%8

�4���($3)��(5
�85���. �

�4���($3)��(5�

�4���($3)��(5!

�4���($3)��(5

Note

Connector shown as viewed from
front of module.

SR2520 User's Manual 3-17

Rev. 05Interface Technology

Chapter 3: Installation

Figure 3-14. SR2520 Signal Connector Pinouts, Variable Voltage, Ch. 00-31.

Mating Connector for SR2520
Variable Voltage, Ch 00-31.

3M Company Part No. 10168-6000EC

Change 8

Note

Connector shown as viewed from
front of module.

�����
������

�	

���

���
� ,-,'
�(�������
��	.��

�4���($3)��(5�

�4���($3)��(5!

�4���($3)��(5
�4���($3)��(5
�85���. �

�$��
���"","<
�$��
���"=,!

�(> �(>

�((�((

�(� �(�

�(! �(!

�(" �("

��2 ��2

��= ��=

��< ��<

��' ��'

�� ��

��> ��>

��(��(

��� ���

��! ��!

��" ��"

�!2 �!2

�!= �!=

�!< �!<

�!' �!'

�! �!

�!> �!>

�!(�!(

�!� �!�

�!! �!!

�!" �!"

�"2 �"2

�"= �"=

�"< �"<

�"' �"'

�" �"

�"> �">

�"(�"(

�"� �"�

�"! �"!

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

�)*����""

�)*����"!

�)*����"�

�)*����"(

�)*����">

�)*����"

�)*����"'

�)*���"<

�)*����"=

�)*����"2

�)*����!"

�)*����!!

�)*����!�

�)*����!(

�)*����(" �)*����!>

�)*����(! �)*����!
�$��
���!',�(
�$��
����>,(!

�)*�����2

�)*�����=

�)*�����<

�)*�����'

�)*�����

�)*�����>

�)*�����(

�)*������

�)*�����!

�)*�����"

�)*����!2

�)*����!=

�)*����!<

�)*����!'

�(2,6�����7��(31,��3'&2$2,

3-18 SR2520 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

Mating Connector for SR2520
Rail Voltage Connector.
3M Company

Part No. 10136-6000EC

Figure 3-15. SR2520 Rail Voltage Connector Pinouts.

�����
������

�	

���

���
� ,-,'
�(�������
��	.��

(
((
(!
�2
�<
�
�(
�!
!2
!<
!
!(
!!
2
<

(
!

('
(>
(�
("
�=
�'
�>
��
�"
!=
!'
!>
!�
!"
=
'
>
�

96�
96�
96�
�$0�

�$/�

96�
�*0�

�*/�

96�
�*0�

�*/�

96�
�*0�

�*/�

96�
�*0�

�*/�

96�

96�
96�
96�
�$/�

96�
�$0�

�*/�

96�
�*0�

�*/�

96�
�*0�

�*/�

96�
�*0�

�*/�

96�
�*0�

�4���($3)��(5�

�4���($3)��(5!

�4���($3)��(5

Change 4

Note

Connector shown as viewed from
front of module.

SR2520 User's Manual 3-19

Rev. 05Interface Technology

Chapter 3: Installation

Figure 3-16. SR2520 Auxiliary Power Connector Pinouts.

Mating Connector for SR2520
Auxiliary Power Connector.
Connector Housing:

ITT CANNON DAM3W3SA197
Pins (3 ea):

ITT CANNON DM53744-1
Metal Backshell:

ITT CANNON 980-2000-346

�����
������

�	

���

���
������
���	
��

���������

�*"'+'$39��(:,3��(%%,12(35

-���

�%)

%41

Change 4

Note

Connector shown as viewed from
front of module.

3-20 SR2520 User's Manual

Rev. 05 Interface Technology

Chapter 3: Installation

(THIS PAGE INTENTIONALLY LEFT BLANK)

Change 1

Published by
Interface Technology, Inc.

300 S. Lemon Creek Drive
Walnut, CA 91789

User's Manual

RG2500 Rail Generator

Rev. 05 Apr 1998
Chg. 01 Sep 2001

�9� ""

����		
	
	���

��������

�������!

�����������

	
��������
��
�����������

�������������������������

Record of Changes

Entered By
Title or

Brief Description
Date of
Change

Change
No.

Preliminary Release (w/o Theory of Operation)

First Official Issue

Changed Revision number only, for consistency

Changed specifications page, pg. 1-4.

pg 1-1 .. last para., 4th line ... changed "...-4 to 4.5 volts" to "...
+3 to +4.5 volts." pg 1-4, changed specifications under
"Output Range". pg 1-3, changed Table 1-1 under "Voltage
Range" -- both columns. pg 2-1, changed specifications under
"Output Voltages."
pgs 3-2, 3-3, 3-5 ... under :HIGH, changed Parameter Defini-
tion from "Range from -4 to +5.5" to "Range from -2.9 to +5.5."
pg.3-5, under :LOW, changed Parameter Definition from
"Range for -4 to 4.5" to "Range from -3.0 to 4.5".

Jan 97

Apr 97

Apr 98

Sep 01

May 03

Rev A

Rev 02

Rev 05

Chg 01

Chg 2

Factory

Factory

Factory

Factory

Factory

RG2500 User's Manual

RG2500 User's Manual Table of Contents iii

Interface Technology Rev. 05

Contents Chapter 1, General Information

About This Manual ... 1-1
Applicability ... 1-1
Supersedure Notice ... 1-1
Equipment Description .. 1-1
Controls and Indicators .. 1-2
Specifications .. 1-4

Chapter 2, Theory of Operation

Output Voltages ... 2-1
Block Diagram ... 2-1
VXI Interface .. 2-2
Positive and Negative Boost .. 2-2
Current Monitor ... 2-2
Power Filter ... 2-2
Control Block ... 2-2
Auto-Cal .. 2-2

Chapter 3, Programming

Scope of Chapter ... 3-1
Setting Response High Threshold Voltage .. 3-2
Setting Response Low Threshold Voltage ... 3-3
Setting Stimulus High Output Voltage ... 3-4
Setting Stimulus Low Output Voltage .. 3-5
Initiating Calibration ... 3-6
Connecting Voltage Output ... 3-7
Disconnecting Voltage Output ... 3-8

Chapter 4, Installation

Scope of Chapter ... 4-1
Unpacking and Inspection ... 4-1
Logical Addressing .. 4-1
Slot Dependencies .. 4-1
Backplane Jumpers ... 4-1

Fig. 1-1, RG2500 Control Locations .. 1-2
Fig. 1-2, RG2500 Rail Generator Showing External Cabling 1-3
Fig. 2-1, RG2500 Simplified Block Diagram .. 2-3
Fig. 4-1, Address Switches Set to Logical Address 12h .. 4-1
Fig. 4-2a, Rail Generator Cabling (1 of 2) .. 4-2
Fig. 4-2b, Rail Generator Cabling (2 of 2) .. 4-3

Table 1-1, RG2500 Output Voltages ... 1-3

List of Figures

List of Tables

RG2500 User's Manual Table of Contents iv

Interface Technology Rev. 05

THIS PAGE INTENTIONALLY LEFT BLANK

RG2500 Rail Generator 1-1

Rev. 05Interface Technology

Chapter 1: General Information

C H A P T E R 1

General Information
This manual provides installation and operation information for the
Interface Technology RG2500 Rail Generator. Information contained
herein is intended for use by technical personnel involved in the actual
installation and operation of the subject instrument.

Arrangement of Contents

Information contained in this manual is arranged in four chapters, as
follows:

� Chapter 1 General Information
� Chapter 2 Theory of Operation
� Chapter 4 Programming
� Chapter 5 Installation

The information contained in this manual covers a single equipment
configuration designated RG2500 Rail Generator. Differences, if any,
between this equipment and the actual equipment supplied are covered by
Difference Data included at the front of this manual.

This manual supersedes RG2500 User's Manual, Rev. 1.

See Fig.1-1. The RG2500 Rail Generator is a programmable power
supply used to provide operating voltages to the SR2510 Timing / Control
/ I/O Module and SR2520 I/O Module when these modules are configured
for programmable (variable voltage) I/O operation.

The RG2500 receives operating voltages and control commands from the
host computer, and supplies one or two SR2500 I/O modules with eight
individual output voltages, each of which is separately programmable over
a range of -1.5 to 7.0 volts, or -3 to 4.5 volts, as listed in Table 1-1. Two
100-pin output connectors are provided on the RG2500 front panel.
Operating voltages are routed from the RG2500 by means of a special
breakout cable that splits the output lines from a single RG2500 output
connector into three separate cables for use by the SR2500 system. Each
of the three cables supplies programmable voltages to one of three 32-
channel I/O boards within the SR2510 or SR2520 modules. Pinouts for

About This Manual

Applicability

Supersedure Notice

Equipment Description

Change 2

RG2500 Rail Generator

Rev. 05 Interface Technology

1-2 Chapter 1: General Information

the RG2500 Rail Generator connectors and the
breakout cable are shown in Figure 4-2.

Controls and Indicators

See Fig. 1-1. All connectors and LEDs for the
RG2500 Rail Generator are located on the front
panel.

LEDs

There are two LEDs located at the top of the
RG2500 module.

� ACCESS (yellow) Illuminates briefly each time
the SR2510 Timing / Control / I/O Module
communicates with the RG2500.

� SYSFAIL (red) Off during normal operation.
During the power-up sequence, this indicator is
lit until the internal self-test is complete. The
indicator remains lit if the self-test fails.

Connectors

Two 100-pin connectors are provided on the
RG2500 front panel. Output voltages from these
connectors is listed in Table 1-1. Refer to Chapter 4
for connector pinout information.

Figure 1-1.
RG2500 Control Locations.

�9� ""

����		
	
	���

��������

�������!

�������

�!�"��

�������

�!�"��

RG2500 Rail Generator 1-3

Rev. 05Interface Technology

Chapter 1: General Information

Figure 1-2.
RG2500 Rail Generator
Showing External Cabling.

Name

VOHA1

VOHB1

VOLA1

VOLB1

VTHA1

VTHB1

VTLA1

VTLB1

Description

Output Voltage High A
Output Voltage High B
Output Voltage Low A
Output Voltage Low B
Threshold Voltage High A
Threshold Voltage High B
Threshold Voltage Low A
Threshold Voltage Low B

Voltage Range

-1.5 V to +7.0 V
-1.5 V to +7.0 V
-3.0 V to +4.5 V
-3.0 V to +4.5 V
-2.9 V to +5.5 V
-2.9 V to +5.5 V
-2.9 V to +5.5 V
-2.9 V to +5.5 V

Name

VOHA2

VOHB2

VOLA2

VOLB2

VTHA2

VTHB2

VTLA2

VTLB2

Description

Output Voltage High A
Output Voltage High B
Output Voltage Low A
Output Voltage Low B
Threshold Voltage High A
Threshold Voltage High B
Threshold Voltage Low A
Threshold Voltage Low B

Voltage Range

-1.5 V to +7.0 V
-1.5 V to +7.0 V
-3.0 V to +4.5 V
-3.0 V to +4.5 V
-2.9 V to +5.5 V
-2.9 V to +5.5 V
-2.9 V to +5.5 V
-2.9 V to +5.5 V

Connector 1 Connector 2

Table 1-1. RG2500 Output Voltages.

� � � � � � � � � �� �� �

�����
�������
������

�	,
��!�+

/	��!�-
�����

�*��-!�

���!13������,

����0��,

-��22����,

2�-���,

����0��	-

�,�	-����2�

2,+
2,+
2,+
2,+
2,+
2,+
2,+
2,+

/�-
�
�
�
�
�

�
�

�	

���

������ !"

�����
������

�	

���

������ �" �9� ""

����		
	
	���

��������

�������!

��!���
�$'+��,%,3$2(3

�6 ��3,$;(*2
�$<+,

�6 ��3,$;(*2
�$<+,

	�!�!�
�"#$%&'(%
�()*+,

	�!���
�$'%

�()*+,
	+(2.�

�(%23(++,3

Change 2

RG2500 Rail Generator

Rev. 05 Interface Technology

1-4 Chapter 1: General Information

Output Voltages:
Voltage Description Output Range

V
OHA

Output Voltage High, A -1.5 to +7.0 volts
V

OHB
Output Voltage High, B -1.5 to +7.0 volts

V
OLA

Output Voltage Low, A -3.0 to +4.5 volts
V

OLB
Output Voltage Low, B -3.0 to +4.5 volts

V
THA

Threshold Voltage High, A -2.9 to +5.5 volts
V

THB
Threshold Voltage High, B -2.9 to +5.5 volts

V
TLA

Threshold Voltage Low, A -2.9 to +5.5 volts
V

TLB
Threshold Voltage Low, B -2.9 to +5.5 volts

Note: The above voltages are available at each of the two output connectors.

VXI Specifications

Interface Compatibility:
RG2500 Register-based, servant only

(controlled by SR2510)
VXI Revision 1.4
Size C-size, single slot
Configuration Static

Power Requirements:
+24.0 volts 1.0 A 24W max.
+12.0 volts 1.0 A 12W max.
+5.0 volts 7.0 A 35W max.
-5.2 volts 5.0 A 26W max.
-12.0 volts 1.0 A 12W max.
-24.0 volts 1.0 A 24W max.

Cooling Requirements:
Power 40W max. (15W typical)
Airflow 4L/sec @ 0.2mm water pressure

for 10° temperature rise

Environmental Specifications:
Temperature Storage = -40°C to +75°C

Operating = 0°C to +45°C
Humidity 5% to 95% relative, noncondensing

RG2500 SPECIFICATIONS*

* Specifications subject to change without notice.

Change 2

RG2500 User's Manual 2-1

Rev. 05Interface Technology

Chapter 2: Theory of Operation

C H A P T E R 2

Theory of Operation
The RG2500 Rail Generator supplies up to 16 independently program-
mable output voltages to the SR2500 variable voltage module(s). The
voltages are supplied via two output connectors (Output 1 and Output 2)
located on the front panel of the Rail Generator; each connector supplies
four rail voltages and four threshold voltages.

The high rail voltages are:

� VOHA1 -1.5 to +7.0 volts (connector 1)
� VOHB1 -1.5 to +7.0 volts (connector 1)
� VOHA2 -1.5 to +7.0 volts (connector 2)
� VOHB2 -1.5 to +7.0 volts (connector 2)

The low rail voltages are:

� VOLA1 -3.0 to +4.5 volts (connector 1)
� VOLB1 -3.0 to +4.5 volts (connector 1)
� VOLA2 -3.0 to +4.5 volts (connector 2)
� VOLB2 -3.0 to +4.5 volts (connector 2)

The high threshold voltages are:

� VTHA1 -2.9 to +5.5 volts (connector 1)
� VTHB1 -2.9 to +5.5 volts (connector 1)
� VTHA2 -2.9 to +5.5 volts (connector 2)
� VTHB2 -2.9 to +5.5 volts (connector 2)

The low threshold voltages are:

� VTLA1 -2.9 to +5.5 volts (connector 1)
� VTLB1 -2.9 to +5.5 volts (connector 1)
� VTLA2 -2.9 to +5.5 volts (connector 2)
� VTLB2 -2.9 to +5.5 volts (connector 2)

Output Voltages

Block Diagram See Fig. 2-1. The RG2500 Rail Generator accepts the following input
voltages from the VXI chassis: ±24 volts, ±12 volts, -5.2 volts, and +5.0
volts. Switching voltage regulators within the RG2500 convert these
input voltages to programmable output voltages, as indicated above. The
combined input power to the RG2500 is approximately 130 watts.

Change 2

RG2500 User's Manual

Interface Technology

2-2 Chapter 2: Theory of Operation

Rev. 05

The VXI interface consists of a proprietary ASIC, an address selection
switch, and address and data bus buffers that provide a register-based
A32/D32 VXI interface between the VXI bus and the RG2500.

During operation, the RG2500 requests a 1 MB block of memory from the
resource manager. Although direct (one way) communication from the
host computer to the rail generator is possible, all RG2500 commands
from the host computer are first sent to the SR2510 Timing / Control / I/O
Module where they are parsed. The RG2500 will then, in turn, be pro-
grammed by the SR2510 acting as bus master. This eliminates the need
for having to learn the register-based memory map of the RG2500 and
provides a single programming point within the system ... i.e., the SR2510.

These boost regulators are switching regulators that boost the +5 Vdc and
-5.2 Vdc to +24 Vdc and -24 Vdc, respectively. These regulators are
activated whenever the amount of current drawn from the ±24 Vdc busses
approaches 1-ampere.

The current load of the six VXI power supplies is monitored and all
outputs are disabled if excessive current is drawn from any one of the rail
outputs. The over-current trip-point is set to approximately 1-ampere. If
an over-current condition should occur, the power rails will automatically
be restored to normal operation by the internal firmware, when the over-
current condition no longer exists.

After an over-current condition has occurred, the firmware checks every
10 seconds to determine whether or not the overload still exists. If so, the
power rails will remain off, otherwise if the overload no longer exists the
rails are restored to normal operation.

The VXI power supplies are fused and filtered. Fuses are soldered
directly to the RG2500 PCB. Fuse ratings are as follows:

� +5 Vdc, fused at 7 A
� +12 Vdc, fused at 1 A
� +24 Vdc, fused at 1 A
� -5.2 Vdc, fused at 5 A
� -12 Vdc, fused at 1 A
� -24 Vdc, fused at 1 A

The control block accepts input from the current monitor and shuts down
all outputs if an over-current condition occurs.

The RG2500 has an A/D converter that monitors output voltages, thus
allowing the RS2500 to self-calibrate each of the 16 outputs against an
internal on-board precision voltage reference. The Auto-Cal function
requires approximately 45 seconds and is initiated by sending the appro-
priate command to the SR2510 module. During the calibration process,

VXI Interface

Positive and Negative
Boost

Current Monitor

Power Filter

Control Block

Auto-Cal

R
G

2500 U
ser's M

an
u

al
2-3

R
ev. 05

In
terface T

ech
n

o
lo

g
y

C
h

ap
ter 2: T

h
eo

ry o
f O

p
eratio

n

 �����

 �����

�+ ��+2�9��

�+ ��+2�9��

 �����

 �����

�+ ��+2�9��

�+ ��+2�9��

�2%� 2�
��2�>

���2����

�� �%�
�2%��2

�2������
�22��

%�?�����
�22��

�2=�
�����

���
�%�� ����

2�������#

2������,

����#

����#

���0#

���0#

����#

����#

���0#

���0#

����,

����,

���0,

���0,

����,

����,

���0,

���0,

Figure 2-1.
RG2500 Simplified Block Diagram.

RG2500 User's Manual

Interface Technology

2-4 Chapter 2: Theory of Operation

Rev. 05

communication occurs between the SR2510 module and the RS2500 Rail
Generator over the VXI bus. Issuing other VXI bus system commands
during this such communication will, unnecessarily, lengthen the calibra-
tion time.

Threshold voltages are generated by 12-bit programmable DACs (digital-
to-analog converter). The SR2500 output voltages are generated using the
DAC outputs to drive push/pull power amplifiers. Each output pin is rated
to source/sink 50 mA of current from its respective power amplifier (VOH

or VOL).

Note
The SR2500 variable voltage outputs use a high-speed switch to
switch between the Voh and Vol rail levels, depending on whether a
logic-l or logic-0 is being output.

RG2500 User's Manual Chapter 3: Programming 3-1

Interface Technology Rev. 05

Scope of Chapter This chapter contains the programming command routines that are unique
to the RG2500 Rail Generator. The routines in this chapter should be
used in conjunction with the general programming commands and
command routines contained in the SR2500 main manual.

C H A P T E R 3

Programming

3-2 Chapter 3: Programming RG2500 User's Manual

Rev. 05 Interface Technology

SYSTem :RGEN :THREshold :HIGH(?)

SETTING RESPONSE HIGH THRESHOLD VOLTAGE

The SYST:RGEN:THREshold:HIGH command sets the High Threshold
Voltage on the RG2500. Parameters for this command are as follows:

Number of Rail Generator

1-9 (default 1)

Selects which voltage set

(A1 | A2 | B1 | B2)

Range from -2.9 to +5.5

:RGEN

Parameter Definition

:THREshold

Parameter Definition

:HIGH

Parameter Definition

Examples: SYST:RGEN1:THREshold A1:HIGH 2.0
SYST:RGEN1:THREshold A1:HIGH?

2.000000e+00 volts

Change 2

RG2500 User's Manual Chapter 3: Programming 3-3

Interface Technology Rev. 05

SYSTem :RGEN :THREshold :LOW(?)

SETTING RESPONSE LOW THRESHOLD VOLTAGE

The SYST:RGEN:THREshold:LOW command sets the Low Threshold
Voltage on the RG2500. Parameters for this command are as follows:

Number of Rail Generator

1-9 (default 1)

Selects which voltage set

(A1 | A2 | B1 | B2)

Range from -2.9 to +5.5

SYST:RGEN1:THREshold A1:LOW 0.8
SYST:RGEN1:THREshold A1:LOW?

8.000000e-01 volts

:RGEN

Parameter Definition

:THREshold

Parameter Definition

:LOW

Parameter Definition

Examples

Change 2

3-4 Chapter 3: Programming RG2500 User's Manual

Rev. 05 Interface Technology

SETTING STIMULUS HIGH OUTPUT VOLTAGE

SYSTem :RGEN :RAIL :HIGH(?)

The SYST:RGEN:RAIL:HIGH command sets the High Stimulus Voltage
on the RG2500. Parameters for this command are as follows:

Number of Rail Generator

1-9 (default 1)

Selects which voltage set

(A1 | A2 | B1 | B2)

Range from -1.5 to +7

SYST:RGEN1:RAIL A1:HIGH 5
SYST:RGEN1:RAIL A1:HIGH?

5.000000e+00 volts

:RGEN

Parameter Definition

:RAIL

Parameter Definition

:HIGH

Parameter Definition

Examples

RG2500 User's Manual Chapter 3: Programming 3-5

Interface Technology Rev. 05

SETTING STIMULUS LOW OUTPUT VOLTAGE

SYSTem :RGEN :RAIL :LOW(?)

The SYST:RGEN:RAIL:HIGH command sets the Low Stimulus Voltage
on the RG2500. Parameters for this command are as follows:

Number of Rail Generator

1-9 (default 1)

Selects which voltage set

(A1 | A2 | B1 | B2)

Range from -3.0 to +4.5

SYST:RGEN1:RAIL A1:LOW 0
SYST:RGEN1:RAIL A1:LOW?

0.000000e+00 volts

:RGEN

Parameter Definition

:RAIL

Parameter Definition

:LOW

Parameter Definition

Examples

Change 2

3-6 Chapter 3: Programming RG2500 User's Manual

Rev. 05 Interface Technology

The SYST:RGEN:CALibrate command calibrates the RG2500. Param-
eters for this command are as follows:

Number of Rail Generator

1-9 (default 1)

SYST:RGEN 1:CAL
SYST:RGEN 3:CAL?

0 | 1

INITIATING CALIBRATION

SYSTem :RGEN :CALibrate(?)

:RGEN

Parameter Definition

Examples

Response

Note

The SYST:REGEN n:CAL? command will respond with a '1' if the rail gen-
erator has been calibrated since power on and with a '0' if it has not been
calibrated since power on.

RG2500 User's Manual Chapter 3: Programming 3-7

Interface Technology Rev. 05

CONNECTING VOLTAGE OUTPUT

SYSTem :RGEN :CONN

The SYST:RGEN:CONN command connects the output voltages on the
RG2500 connectors. Parameters for this command are as follows:

Number of Rail Generator

1-9 (default 1)

Number of connector on the Rail Generator

1 | 2

SYST:RGEN 3:CONN 1
SYST:RGEN 1:CONN 2

:RGEN

Parameter Definition

:CONN

Parameter Definition

Examples

3-8 Chapter 3: Programming RG2500 User's Manual

Rev. 05 Interface Technology

SYSTem :RGEN :DISC

DISCONNECTING VOLTAGE OUTPUT

The SYST:RGEN:DISC command disconnects the output voltages on the
RG2500 connectors. Parameters for this command are as follows:

Number of Rail Generator

1-9 (default 1)

Number of connector on the Rail Generator

1 | 2

SYST:RGEN 3:DISC 1
SYST:RGEN 1:DISC 2

:RGEN

Parameter Definition

:DISC

Parameter Definition

Examples

RG2500 User's Manual Chapter 4: Installation 4-1

Interface Technology Rev. 05

C H A P T E R 4

Installation

Figure 4-1.
Address Switches Set
to Logical Address 12.

Note

The logical address of the
RG2500 Rail Generator must be
set to a higher value than the logi-
cal address of the SR2510 (and
SR2520, if used) with which it is
used in conjunction with.

Scope of Chapter This chapter contains instructions for unpacking, inspecting, installing,
and checking out the RG2500 Rail Generator.

Your RG2500 was thoroughly inspected and tested before shipment from
the factory and is ready for immediate operation once all installation
procedures have been completed. Carefully remove the instrument from
its shipping carton and check for any obvious damage that may have
occurred during shipment. If damage is found, report it to the freight
carrier immediately. Interface Technology is not liable for damage that
may have occurred during transit. Save the shipping carton and all
packing material for possible future use.

Before installation, the logical address for the RG2500 must be set accord-
ing to the requirements of the Slot-0 Controller. The address switches are
numbered from one to eight. Switch 1 corresponds to the least significant
bit (LSB) of the logical address. The address is entered in binary, where
an ON switch sets the corresponding bit to "0", see Fig. 4-1.

The RG2500 has no slot dependencies.

The RG2500 does not use any of the IACK or BG3 signals. These signals
are passed through. The user may remove or install the jumpers for this
VXI slot, as required.

Unpacking and Inspection

Logical Addressing

Slot Dependencies

Backplane Jumpers

� � � � � � �

�,

��� ���

�����

�		
���
�������

���
�	��

�
���
�����

�������������
��������
�

�#����������

4-2 Chapter 4: Installation RG2500 User's Manual

Rev. 05 Interface Technology

Figure 4-2a.
Rail Generator Cabling (1 of 2).

�*0�

�����
�������
������

�	,
��!�+

/	��!�-
�����

�*��-!�

���!13������,

����0��,

-��22����,

2�-���,

����0��	-

�,�	-����2�

2,+
2,+
2,+
2,+
2,+
2,+
2,+
2,+

/�-
�
�
�
�
�

�
�

�	

���

������ !" �9� ""

����		
	
	���

��������

�������!

��	������	���
�$���)���""!!2=(

(�3�	����	�
�1���������5
(��!"!(','""":�

������
��$�
%���
�"�������

�����
�#����

�	���#�
�"	�"

('

(>
(�

("

�=

�'

�>
��
�"

!=
!'

!>
!�

!"

=

'

>
�

(

((
(!

�2
�<

�
�(

�!
!2

!<
!

!(

!!

2

<

(

!

96�
96�
96�

�$0�

�$/�

96�

�*0�

�*/�

96�

�*0�

�*/�

96�

�*0�

�*/�

96�

�*0�

�*/�

96�

96�
96�
96�

�$/�

96�

�$0�

�*/�

96�

�*0�

�*/�

96�

�*0�

�*/�

96�

�*0�

�*/�

96�

RG2500 User's Manual Chapter 4: Installation 4-3

Interface Technology Rev. 05

*����������	1���������
���

('

(>

(�

("

�'

�>

��

�"

!=

!'

!>

!�

!"

=

'

>

�

(

((

(!

�2

�<

�

�(

�!

!2

!<

!

!(

!!

2

<

(

!���	

����

���	

����

���	

����

���	

����

�=

(<

(2

>!

>(

>

><

>2

 !

 (

 <

 2

'

'<

'2

<!

<(

<

<<

<2

=!

=(

=

=<

=2

2!

2(

2

2<

22!""

2=

2'

2>

2�

2"

==

='

=>

=�

="

<=

<'

<>

<�

<"

'=

''

'>

'�

'"

 =

 >

 �

 "

>=

>'

>�

>"

(=

9�+

9�+

���	

����

���	

����

9�+

9�+

���	

����

���	

����

9�+

9�+

���	

����

���	

����

9�+

9�+

9�+

9�+

9�+ 9�+

�>

!�

(!

�2

���	

����

���	

����

���	

����

���	

����

9�+

9�+

���	

����

���	

����

9�+

9�+

���	

����

���	

����

9�+

9�+

���	

����

���	

����

9�+

9�+

9�+

9�+

9�+ 9�+

���	

����

���	

����

9�+

���	

����

9�+

���	

����

9�+

���	

����

9�+

9�+

9�+

����

���	

����

���	

9�+

����

���	

9�+

����

���	

9�+

����

���	

9�+

9�+

9�+

9�+

9�+

9�+

9�+

2��%'��

2��%'�

2��%'��

��3�	���

�	�
�1���������5
(��!"!�*,'""":�

Figure 4-2b.
Rail Generator Cabling (2 of 2).

4-4 Chapter 4: Installation RG2500 User's Manual

Rev. 05 Interface Technology

THIS PAGE INTENTIONALLY LEFT BLANK

Published by
Interface Technology, Inc.

300 S. Lemon Creek Drive
Walnut, CA 91789

User's Manual

SR2520 w/Guided Probe Option

Rev. 5.0
April, 1998

�����������

	
��������
��
�����������

�������������������������

������
�������

���
	�!�!�

�"#$%&'(%
�()*+,

����/��-�

2	�+�+����/�

�	

��0�

�	

���

Record of Changes

Entered By
Title or

Brief Description
Date of
Change

Change
No.

Changed Revision number only, for consistencyApr 98Rev 05 Factory

SR2520 w/Guided Probe User's Manual

SR2520 w/Guided Probe User's Manual Table of Contents iii

Interface Technology Rev. 05

Contents Chapter 1, General Information

About This Manual ... 1-1
Arrangement of Contents .. 1-1
Applicability ... 1-1
Supersedure Notice ... 1-1
Equipment Description .. 1-1
Features .. 1-2
Controls and Indicators .. 1-3
Specifications .. 1-4

Chapter 2, Theory of Operation

General .. 2-1
Probe Circuitry ... 2-1
Main Logic ... 2-1
Extra User Clocks .. 2-2
Tags .. 2-2

Chapter 3, Programming

General .. 3-1
Guided Probe Commands ... 3-1
SCPI Command Key ... 3-2
Create and Initialize Guided Probe Fields ... 3-3
Detecting Probe Switch Position (down/not down) .. 3-4
Measuring a Voltage With The Probe .. 3-5
Calibrating the Guided Probe .. 3-6
Setting Up The Guided Probe .. 3-7
Clearing The Guided Probe Field .. 3-8
Settting The High Threshold .. 3-9
Setting The Low Threshold .. 3-10
Setting TTL Levels For The Thresholds .. 3-11
Setting ECL Levels For The GP Thresholds .. 3-12

Chapter 4, Installation

Scope of Chapter ... 4-1
Unpacking and Inspection ... 4-1
Installation ... 4-1
Logical Addressing .. 4-1
Slot Dependencies .. 4-2
Backplane Jumpers ... 4-2

Fig. 1-1, Guided Probe Add-In Option to SR2520 Module 1-2
Fig. 1-2, Conrols and Indicators .. 1-3
Fig. 2-1, Functional Block Diagram, Guided Probe Logic 2-3
Fig. 2-2, Functional Diagram, Probe .. 2-3
Fig. 4-1, Address Switches Set to Logical Address 12h .. 4-1
Fig. 4-2, SR2520 w/Guided Probe I/O and Aux. Power Pinouts 4-3
Fig. 4-3, SR2520 w/Guided Probe Aux. Clock Pinouts .. 4-4
Fig. 4-4, Installation of SR2520 w/Guided Probe Module 4-5

List of Figures

SR2520 w/Guided Probe User's Manual Table of Contents iv

Interface Technology Rev. 05

THIS PAGE INTENTIONALLY LEFT BLANK

1-1Chapter 1: General Information

Interface Technology Rev. 05

SR2520 w/Guided Probe Option User's Manual

������������������

General Description

This manual provides installation and operation information for the
Interface Technology SR2520 w/ Guided Probe Option. Information
contained herein is intended for use by technical personnel involved in the
actual installation and operation of the subject instrument.

Arrangement of Contents

Information contained in this manual is arranged in four chapters, as
follows:

• Chapter 1 General Information
• Chapter 2 Theory of Operation
• Chapter 3 Programming
• Chapter 4 Installation

Applicability

The information contained in this manual covers a single equipment
configuration designated SR2520 w/Guided Probe Option. Differences, if
any, between this equipment and the actual equipment supplied are
covered by Difference Data included at the front of this manual.

Supersedure Notice

This manual supersedes portions of SR2500GP Guided Probe User's
Manual, Rev.03 dated Dec. 96 and all previous issues of that publication.

The SR2520 Guided Probe Option provides added capability to read test
points (nodes) on the UUT to determine pass/fail conditions. It is capable
of testing and detecting high, low and indeterminate states and can also
measure analog voltages. Upon determination of the pass/fail state, the
guided probe stores the UUT response along with the compare results for
later readout. The probe has an active input, which minimizes circuit
loading and serves to "condition" the UUT signal before routing it to the
guided probe logic in the SR2520. Located on the probe body is an
ENTER button (used to trigger or continue test execution)

The SR2500GP Guided Probe is supplied as a factory installed add-in
option to the SR2520 Expansion Module, see Figure 1-1.

About This Manual

Equipment Description.

1-2 Chapter 1: General Information

Rev. 05 Interface Technology

SR2520 w/Guided Probe Option User's Manual

Figure 1-1. Guided Probe Add-In Option to SR2520 Module.

0 1 2 3 4 5 6 7 8 9 10 11 12

POWER
SYSFAIL

ACCESS

RUN

ARMED

BUS MST

ERROR

OVR TMP

10 MHz REF IN

CLOCK IN

TRIGGER IN

GATE IN

CLOCK OUT

INPUT FLAGS

GND
GND
GND

GND

GND
GND
GND

GND

BIT
7
6
5
4
3
2
1
0

AUX

PWR

VXISR2510

ACCESS

SYSFAIL

VXI
SR2520

Expansion
Module

CALIBRATE

GUIDED PROBE

AUX
CLKS

AUX
PWR

SR2520
Expansion

Module

SR2510
Main

Module
Slot-0

Controller

Probe

Features:

o Dual Threshold Comparators.
o Initiate Button Located on Probe Body.
o User Replaceable Probe Tip.
o Enable/Disable Probe Testing Per Vector.
o "Learns" Known Good Responses From UUT.
o Active Input Buffer.
o Record High, Low, Indeterminate and Error Information per Vector.
o Record Vector Count/Time Tag.
o 24-Bit Continuous Cycle Counter.
o Detect Indeterminate / Float / Tristate Logic Input.
o Programmable Input Threshold.
o Hardware Signature Generation (Polynomial CRC).
o Programmable Sample Strobe/Window.

1-3Chapter 1: General Information

Interface Technology Rev. 05

SR2520 w/Guided Probe Option User's Manual

Controls and Indicators

There are no operator controls or adjustments on
this instrument ... neither external nor internal.
Operator indicators consist of two LED status
indicators located on the upper left side of the
front panel, and a calibration testpoint for calibrat-
ing the guided probe. Indicator function is as
follows:

INDICATOR FUNCTION

ACCESS LED (yellow) indicator lights
whenever SR2520 module is
accessed over the VXI backplane.

SYSFAIL LED (red) indicator lights during
the power-up sequence until the
internal self-test passes ... or
remains lit if it fails.

CALIBRATE Testpoint supplying calibration
voltage to calibrate the guided
probe.

Figure 1-2.
Controls and Indicators.

����		
	
	���

�"�#5�"�
-#'6"78

������
�������

���
	�!�!�

�"#$%&'(%
�()*+,

����/��-�

2	�+�+����/�

�	

��0�

�	

���

1-4 Chapter 1: General Information

Rev. 05 Interface Technology

SR2520 w/Guided Probe Option User's Manual

Specifications

Frequency Range: DC to 25 MHz.

Minimum Pulse Width: 10 ns.

Modes: Edge sample / compare.
Window compare.

Vector Depth
Standard: 64K.
Optional: 256K.

Input Impedance: 100k ohms.

Resolution: 12-bits, standard analog
measure, ±10.0 volt range.

Memory: Expect, Mask, Record.

Indicators
Detect Logic High: LED (green).
Detect Logic Low: LED (red).

Overvoltage Protection: 40.0 volts.

Interface Compatibility, SR2520 Add-In Option
(Refer to SR2520 specifications.)

Environmental Limitations
Temperature, Storage -40C to +75C
Temperature, Operating 0C to +45C
Relative Humidity 5% to 95%, Noncondensing

Chapter 2: Theory of Operation 2-1

Interface Technology Rev. 05

SR2520 w/Guided Probe Option User's Manual

�����������������	

Theory of Operation
General The SR2500GP probe measures 7" x 3/4", weighs under 4 oz. and has a

tip that is user replaceable. A pushbutton switch on the probe body
generates an interrupt to the SR2510 Main Module. The user may define
the action to take, based on the probe interrupt switch.

Refer to Figs 3-1 and 3-2. The SR2500GP Guided Probe logic is resident
in the SR2520 Expansion Module. It provides the capability to probe
nodes on the UUT, measuring state response, and determine pass / fail
conditions. The Guided Probe does not detract from the standard feature
set of the SR2520, i.e., the Guided Probe does not reduce the available I/O
pin count. In fact, the Guided Probe actually adds additional clocks to the
basic SR2500 Subsystem.

The Guide Probe can test and detect high, low and indeterminate states,
calculate a CRC checksum based on the input steam, detect pulses and
make static measurements of analog voltages. Upon determination of the
pass / fail state, the Guided Probe will store the information read from the
node, the results of the real-time compare between the measured response
and the expected response, and information indicating if the node was
actively driven or tristated. The probe will also store the state of a 24 bit
vector counter (time tag) and a 4 bit user defined tag.

The probe body contains an active input circuit to reduce circuit loading
on the test node and to condition the signal prior to passing it to the main
Guided Probe logic in the SR2520, see Fig 3-2. Located on the probe
body are an activation switch used to trigger or continue test execution
and a contact sensing circuit, which indicates through a pair of LEDs that
the probe tip is in contact with an active conducting node. The probe
receives power for the active components via an interconnect cable, which
also passes the conditioned signal back to the Guided Probe main logic
board.

The Guided Probe main logic resides on the SR2520 expansion logic
board, see Fig 3-1. This board receives programming information from
the VXI bus via a register-based interface and timing control signals from
the SR2510 Main Module via the master / slave interconnect. The Guided
Probe logic consists of input compare logic, memory for storing node data,
compare results, midstate data, expected response, mask data, vector and
user time

Probe Circuitry

Main Logic

2-2 Chapter 2: Theory of Operation

Interface TechnologyRev. 05

SR2520 w/Guided Probe Option User's Manual

tags, and programmable user clocks. It also contains the 16 bit CRC register and provides data format and
timing control of the programmable user clocks.

Extra User Clocks

When the Guided Probe option is installed, an additional 20 user clocks are available on the front panel of the
SR2520. A fixed, four-phase clock is brought out, each phase to a separate pin. The frequency of these
clocks are the same as the test rate programmed into the SR2500 subsystem. An additional 16 programmable
clocks are available as well. These signals are properly not clocks at all, but 16 channels of user program-
mable stimulus. They retain the same characteristics as the other stimulus pins found within the SR2500
subsystem, except that the 16 channels are grouped as two 8 bit fields and output levels are fixed TTL.

The programmable clocks allow the user to define vector states, data formatting and format timing parameters
for each channel. The channels may be used to provide clocks, inverted clocks, synchronization pulses, data
strobes, etc. Algorithmic pattern functions are supported as well as RAM backed pattern generation, although
since the channels are grouped as two 8 bit fields, the algorithmic function is limited to 8 pin groups. Linking
the two 8 bit fields to achieve a 16 bit algorithmic field is not possible on these channels.

Tags

Each time a sample is saved to record memory (probe or I/O inputs), a 24 bit vector count time tag and a 4 bit
user tag are also stored. The programmer can reset the 24 bit counter to zero at any point within a test se-
quence. The counter will then increment once for each test cycle. When the count reaches the maximum
obtainable within a 24 bit counter, the counter recycles to zero and continues.

The user tags are also controlled by the programmer, and provide an additional level of correlation. For
example, the test programmer could set the four bits to 0001 and reset the vector count to zero at the begin-
ning of a UUT initialization routine. Then, during a test of the UUT's I/O ports, the programmer could again
reset the vector counter and set the user bits to 0010. All vectors recorded during UUT initialization will
show the user bits to contain 0001. And all vectors recorded during the I/O port test will show the user bits to
contain 0001. The vector count time tag will indicate the vector cycle each sample was taken, relative to the
beginning of each test segment.

The conditioned node signal passed from the Guided Probe to the main probe logic board may also be used to
generate a CRC signature based on the incoming data stream. The checksum is generated in hardware, real-
time, at whatever test rate the SR2500 subsystem was programmed for. CRC calculations are performed
when enabled by the record state machine, and use the CCITT standard communication polynomial to per-
form the calculation. The CRC signature, or checksum, is the 16 bit remainder produced by dividing the
Guided Probe input stream by the following polynomial, using Galois field arithmetic.

Gx = x16 + x12 + x5 +1

Chapter 2: Theory of Operation 2-3

Interface Technology Rev. 05

SR2520 w/Guided Probe Option User's Manual

Figure 2-1. Functional Block Diagram, Guided Probe Logic.

Figure 2-2. Functional Diagram, Probe.

2-4 Chapter 2: Theory of Operation

Interface TechnologyRev. 05

SR2520 w/Guided Probe Option User's Manual

(THIS PAGE LEFT BLANK INTENTIONALLY)

Interface Technology Rev. 05

3-1Chapter 3: ProgrammingSR2520 w/Guided Probe Option User's Manual

�����������������

Programming

Although the Guided Probe is a special purpose card, it is referenced as if
it were any other I/O card. It has no input pins, except for the probe tip,
and has only 16 limited purpose outputs called "clocks." A special com-
mand is provided to set up the Guide Probe hardware for general use. This
command ("FIELd:PROBe:SETup") creates and initializes the necessary
fields for using the probe. Other commands have been provided for other
probe functions. Data recorded from the probe is accessed in the same
way as any recorded data is accessed from the SR2500.

o Create and Initialize GP Fields
o Detecting Probe Switch Press
o Measuring a Voltage With The Probe
o Calibrating The Guided Probe
o Setting Up The Guided Probe
o Clearing The Guide Probe Fields
o Setting The High Threshold
o Setting The Low Threshold
o Setting TTL Levels For The GP Thresholds
o Setting ECL Levels For The GP Thresholds

General

Guided Probe Commands

SR2520 w/Guided Probe Option User's Manual

Rev. 05 Interface Technology

3-2 Chapter 3: Programming

SCIP SCPI COMMAND KEYAND KEY

command Command words take three forms, ROOT, BRANCH, and LEAF. The ROOT
is the beginning of a command, i.e. the first word in a command string.
Branches are the connecting paths between the ROOT and the LEAF.
Branches may or may not have parameters associated with them, or may have a
suffix, usually a channel indicator. The LEAF terminates the command string
and may or may not have parameters associated with it.

command Indicates commands which do not have parameters.

command Indicates commands with parameters.

command(?) Commands which are followed by a question mark in parenthesis indicate a
command format supporting both a command and a command query.

command? Command strings followed by a question mark without parenthesis indicates a
command query only.

UPPERCASE Command characters displayed in uppercase are required characters.

lowercase Command characters displayed in lowercase are optional characters.

<required> Required parameter or suffix.

[option] Optional command or parameter.

{repeat} Repeat as many times as required.

(min-max) The parameter value entered must be within the range of min to max, inclusive.

aaa | bbb Acceptable choices are aaa OR bbb.

response Response from SR2500.

Interface Technology Rev. 05

3-3Chapter 3: ProgrammingSR2520 w/Guided Probe Option User's Manual

FIELDS USED BY THE GUIDED PROBE (NON-SCPI)

The following fields are used by the probe and can be automatically created and initialized by the
FIELd:PROBe:SETup command.

P_DATA_R Type RECord, pins 30-29. This field will record the raw data from the Guided Probe. A '1' recorded at
pin 29 indicates that the probe detected a low condition; a '1' recorded at pin 30 indicates the probe
detected a high condition. If both pins record a '0' the probe detected an indeterminate condition.

P_ERR_R Type RECord, pins 32-31. This field will record the error data from the Guided Probe. It will compare
the raw data from the probe against an indeterminate condition.

P_UTAG_R Type RECord, pins 28-25. This field is provided to record a user defined vector tag.

P_VTAG_R Type RECord, pins 24-1. This field will record a 24 bit vector tag, that is automatically generated by
the SR5000 Guided Probe hardware. It should be used for no other function. This tag will start at
#h000000 and increment by one to #hFFFFFF at which point it will roll over and begin again at
#h000000.

P_DATA_E Type EXPect, pins 30-29. This field is used to compare against the probe's raw data to ensure that it is
recorded. Defaults are all zeros.

P_DATA_M Type DONtcare, pins 30-29. This field is used to enable the compare of the probe's raw data for
recording. Defaults to all ones.

P_ERR_E Type EXPect, pins 32-31. This field is used to compare the expected data to the actual data from the
probe. It can be filled by using any of the normal methods to write data to a field ... and can also be
filled by using the P_DATA_R field to record data from a known good UUT and then copying that data
to the P_ERR_E field. Defaults are all zeros.

P_ERR_M Type DONtcare, pins 32-31. This field is used to enable the compare of the probe data for the
P_ERR_R and P_ERR_E fields. Defaults to ones.

P_UTAG_E Type EXPect, pins 28-25. This field is filled with whatever tag is expected to be recorded in
P_UTAG_R.

P_UTAG_M Type DONtcare, pins 28-25. This field is used to enable the recording of P_UTAG_R. Defaults to all
ones.

P_VTAG_A Type ALGExpect, pins 24-1. This algorithmic field is usd to generate the vector tag in the P_VTAG_R
field. Do not write to this field.

P_VTAG_E Type EXPect, pins 8-1. This field is pre-filled with '0s' to allow the recording of the vector tag in the
P_VTAG_R field. Do not write to this field.

P_VTAG_M Type DONtcare, pins 8-1. This field is pre-filled with '1s' to allow the recording of the vector tag in the
P-VTAG_R field. Do not write to this field.

:PROBe :SETup

SR2520 w/Guided Probe Option User's Manual

Rev. 05 Interface Technology

3-4 Chapter 3: Programming

DETECTING PROBE SWITCH POSITION (DOWN /NOT DOWN) (NON-SCPI)

The SYSTem:PROBe:SWITch? command will return the current
status of the switch on the Guided Probe switch. It will return a '1' if the
switch is currently being held down, else it will return a '0'.

SYST:PROBE:SWITCH?
0

SYST:PROB:SWIT?
1

0 | 1

SYSTem :PROBe :SWITch?

Examples

Response

Interface Technology Rev. 05

3-5Chapter 3: ProgrammingSR2520 w/Guided Probe Option User's Manual

MEASURING A VOLTAGE WITH THE PROBE (NON-SCPI)

The SYSTem:PROBe:VOLT? command returns the voltage measured at
the probe tip. The value returned is always in volts.

Note
If the probe is not in contact with anything, it will return the value of
the probe's bias voltage, which is automatically set to midway be-
tween the high and low probe threshold voltages.

SYSTEM:PROBE:VOLT?
6.02e0 volts

SYST:PROB:VOLT?
1.47e-3 volts

(-10 to +10) volts.

SYSTem :VOLT?:PROBe

Examples

Response

SR2520 w/Guided Probe Option User's Manual

Rev. 05 Interface Technology

3-6 Chapter 3: Programming

CALIBRATING THE GUIDED PROBE (NON-SCPI)

SYSTem :PROBe :CALibrate(?)

The SYSTem:PROBe:CALibrate command will initiate the calibra-
tion of the Guided Probe DACs and ADCs. The probe must be inserted
into the Calibration Point, in the front panel of the SR2520 module in
order for calibration to be successful.

The SYSTem:PROBe:CALibrate? command will return a '1' if calibra-
tion of the Guided Probe has been performed since power on, else it will
return a '0' if calibration has not been performed since power on.

Note
The calibration process may take up to 3 minutes; the probe must
be inserted in the SR2520's calibration point during the entire pro-
cess. Care must be taken not to short the probe tip to the front
panel during the calibration process. To verify that calibration has
been successful, take a voltage measuement of the calibrating
point using the SYST:PROB:VOLT? command. The voltage mea-
sured should be 5 volts.

SYSTEM:PROBE:CALIBRATE
SYST:PROB:CAL

SYSTEM:PROBE:CAL?
SYST:PROB:CAL?

0 | 1

Examples

Response

Interface Technology Rev. 05

3-7Chapter 3: ProgrammingSR2520 w/Guided Probe Option User's Manual

The FIELd:PROBe:SETup command will create and initialize the fields
used with the Guided Probe hardware (see page 2-3 for details).

The FIELd:PROBe:SETup? will return a '1' if the probe fields have been
set up for this test and a '0' if the probe fields are not set up for this test, or
if the setup has been cleared.

FIELD:PROBE:SETUP
FIELD:PROBE:SET

FIELD:PROBE:SETUP?
FIELD:PROBE:SET?

0 | 1

SETTING UP THE GUIDED PROBE FIELDS (NON-SCPI)

FIELd :SETup(?):PROBe

Examples

Response

SR2520 w/Guided Probe Option User's Manual

Rev. 05 Interface Technology

3-8 Chapter 3: Programming

CLEARING THE GUIDED PROBE FIELDS (NON-SCPI)

The FIELd:PROBe:CLEar command will delete the fields created by
the FIELd:PROBe:SETUP command and reset the Probe Setup flag to
'0'.

FIELD:PROBE:CLEAR
FIEL:PROB:CLE

FIELd :PROBe :CLEar

Examples

Interface Technology Rev. 05

3-9Chapter 3: ProgrammingSR2520 w/Guided Probe Option User's Manual

SETTING THE HIGH THRESHOLD (NON-SCPI)

:SAMPle :PROBe :HIGH(?)RECord :CONDitioner

The RECord:CONDitioner:SAMPle:PROBe:HIGH command will set the
high threshold voltage for the Guided Probe. Any voltage higher than the
high threshold will be considered a '1'.

The RECord:CONDitioner:SAMPle:PROBe:HIGH? command will return
the current setting of the high threshold voltage for the Guided Probe.

:HIGH < MAX | MIN | DEF | (-9.0 volts to +10.0 volts) >

MAX = The maximum voltage for the high threshold (+10.0 volts).

MIN = The minimum voltage for the high threshold (-9 volts).

DEF = The default voltage for the high threshold (+2.0 volts).

REC:COND:SAMP:PROBE:HIGH MAX
REC:COND:SAMP:PROB:HIGH 3.20 V

REC:COND:SAMP:PROB:HIGH?

5.0e-1 volts

-2.5 volts

Parameter Definition

Examples

Response

SR2520 w/Guided Probe Option User's Manual

Rev. 05 Interface Technology

3-10 Chapter 3: Programming

SETTING THE LOW THRESHOLD (NON-SCPI)

:SAMPle :PROBe :LOW(?)RECord :CONDitioner

The RECord:CONDitioner:SAMPle:PROBe:LOW command will set
the low threshold voltage for the Guided Probe. Any voltage lower than
the low threshold will be considered a '0'.

The RECord:CONDitioner:SAMPle:PROBe:LOW? command will
return the current setting of the low threshold voltage for the Guided
Probe.

:LOW < MAX | MIN | DEF | (-10.0 volts to +9.0 volts) >

MAX = The maximum voltage for the low threshold (+9.0 volts).

MIN = The minimum voltage for the low threshold (-10 volts).

DEF = The default voltage for the high threshold (+0.8 volts).

REC:COND:SAMP:PROBE:LOW MAX
REC:COND:SAMP:PROB:LOW 3.20 V

REC:COND:SAMP:PROB:LOW?

9.000000e+00 volts

3.200000e+00 volts

Parameter Definition

Examples

Response

Interface Technology Rev. 05

3-11Chapter 3: ProgrammingSR2520 w/Guided Probe Option User's Manual

SETTING TTL LEVELS FOR THE GP THRESHOLDS (NON-SCPI)

The RECord:CONDitioner:SAMPle:PROBe:TTL command will set the
high and low threshold voltages for the Guided Probe to levels suitable for
TTL logic. The high threshold will be set to +2.0 volts and the low
threshold will be set to +0.8 volts.

Note
These values are identical to the default values for the probe high
and low threshold values.

REC:COND:SAMP:PROBE:TTL

:CONDitionerRECord :SAMPle :PROBe :TTL

Examples

SR2520 w/Guided Probe Option User's Manual

Rev. 05 Interface Technology

3-12 Chapter 3: Programming

SETTING ECL LEVELS FOR THE GP THRESHOLDS (NON-SCPI)

The RECord:CONDitioner:SAMPle:PROBe:ECL command will set the
high and low threshold voltages for the Guided Probe to levels suitable
for ECL logic. The high threshold will be set to -1.15 volts and the low
threshold will be set to -1.49 volts.

REC:COND:SAMP:PROBE:ECL

:CONDitioner :SAMPle :PROBe :ECLRECord

Examples

Interface Technology Rev. 05

3-13Chapter 3: ProgrammingSR2520 w/Guided Probe Option User's Manual

Figure 3-2.
Setting Up The Guided Probe,

(Sheet 1 of 2).

Continued on Page 3-16.

Flow Chart for Setting Up Guided Probe

�3,$2,�$%)��%'2'$+'�,
����',+)&

,"60����6�����6	����

�$&�28,
���<,,%�1$+'<3$2,)
&'%1,�'%&2$++,)=

�$&�28,
���<,,%�1$+'<3$2,)

:'28'%�28,�+$&2
�!�>(%28&=

�%&,32����'%2(��$+5��('%2

�$+'<3$2,�28,���
,"60	
	�6�����6��

�(2,6��$+'<3$2'(%�2'>,
'&�$##3("5� �>'%5

	,2*#���
�83,&8(+)�,?,+&

,"60���6����6	���6�����6��
�(2,6��,@$*+2��,1(3)��',+)

>*&2�<,�),@'%,)
<,@(3,8$%)

�,$&*3,��(+2$A,&
,"60	
	�6�����6���=

�	

��

�	

��

�

SR2520 w/Guided Probe Option User's Manual

Rev. 05 Interface Technology

3-14 Chapter 3: Programming

Continued from Page 3-15

Figure 3-2.
Setting Up The Guided Probe,

(Sheet 2 of 2).

�

($)��"#,12��$22,3%&
�B����B�
�B���B�

($)��$&;��$22,3%&
�B����B�
�B���B�

�+,$3��33(3�$218
�(2,6��,@$*+2�	2'>*+*&��',+)
>*&2�<,�),@'%,)�<,@(3,8$%)

�%'2'$+'�,
28,�	�����

�*%�28,��,&2

C*,39��,1(3)��',+)&
�B����B�
�B���B�

Flow Chart for Setting Up Guided Probe (cont.)

Initialize
the SR2500

4-1

Rev. 05Interface Technology

Chapter 4: InstallationSR2520 w/Guided Probe User's Manual

������������������

Installation
Scope of Chapter This chapter contains instructions for unpacking, inspecting, installing,

and checking out the SR2520 Expansion Module w/Guided Probe option.

Your instrument was thoroughly inspected and tested before shipment
from the factory and is ready for immediate operation once all installation
procedures have been completed. Carefully remove the instrument from
its shipping carton and check for any obvious damage that may have
occurred during shipment. If damage is found, report it to the freight
carrier immediately. Interface Technology is not liable for damage that
may have occurred during transit. Save the shipping carton and all pack-
ing material for possible future use.

Logical Addressing

Before installation, the logical address for the SR2520 w/Guided Probe op-
tion must be set. Set the address switches according to the requirements of
the slot-0 controller. The address switches are numbered from one to eight.
Switch 1 corresponds to the least significant bit (LSB) of the logical address.
The address is entered in binary, where an ON switch sets the corresponding
bit to 0 (Fig 4-1).

Unpacking and Inspection

Installation

Figure 4-1
Address Switches Set

to Logical Address 12
hex

 .

� � � � � � �

���

��� !��

*��	�

�$$� ((
�9#�7: (

-�'
�$;

�����
�"� �

*
��/"78'�"�
���� 7���(

����
�&'"�(#���!�$%�
9.2%#$ $����5

�'�#��

Note

The logical addresses of the
SR2520 Expansion Modules must
be set to a higher value than the
logical address of the SR2510
Main Module. If there is more than
one SR2510 in a VXI chassis,
then the SR2520's with addresses
between any 2 SR2510's, will be
part of the lower addressed
SR2510's system. The SR2520
with the lowest numbered logical
address is Expansion Module #1.
The next highest SR2520 logical
address is Expansion Module #2.
The highest SR2520 logical ad-
dress is the most significant Ex-
pansion Module number. To verify
all Expansion Modules have been
recognized by the system, send a
“*IDN?” query command.

4-2 SR2520 w/Guided Probe User's Manual

Rev. 05 Interface Technology

Chapter 4: Installation

Logical addressing for the SR2500GP Guided Probe module is the same
as for the standard SR2520 Expansion Module w/o Guided Probe, refer to
SR2500 User's Manual.

The SR2500GP Guided Probe Module (stand alone module) must be
installed in theVXI chassis to the right-of the SR2510 Main Module see
Fig 4-4.

The use of backplane jumpers for the SR2500GP Guided Probe module
are the same as for the standard SR2520 Expansion Module w/o Guided
Probe, refer to the SR2520 User's Manual.

Logical Addressing

Slot Dependencies

Backplane Jumpers

4-3

Rev. 05Interface Technology

Chapter 4: InstallationSR2520 w/Guided Probe User's Manual

Figure 4-2. SR2520 w/Guided Probe I/O and Aux. Power Pinouts.

� ��#��%�(�<��
������!"#��!�$%� ���
������&'"�(#��
!�$%�

� ��#��%�(�<��
������!"#��!�$%� ���
������&'"�(#��
!�$%�

� ��#��%�(�<��
������!"#��!�$%� ���

������&'"�(#��
!�$%�

�����
�������

���
	�!�!�

�"#$%&'(%
�()*+,

����/��-�

2	�+�+����/�

�	

��0�

�	

���

4-4 SR2520 w/Guided Probe User's Manual

Rev. 05 Interface Technology

Chapter 4: Installation

Figure 4-3. SR2520 w/Guided Probe Aux. Clock Pinouts.

 D��
 � E
 � �
 �
 � !
!D �
!�!E
!�!�
! !�
!�!!
�D!�
���E
����
� ��
���!
�D��
���E
����
� ��
���!

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

������
������
�����!
�����
������
������
������
������
�����E
�����D
������
������
�����!
�����
������
������
����
����
���!
���

�*"��+;��(%%,12(3

!"�#�;����� 7���=
�!���>'"�?��"���,�@
������������

������
�������

���
	�!�!�

�"#$%&'(%
�()*+,

����/��-�

2	�+�+����/�

�	

��0�

�	

���

4-5

Rev. 05Interface Technology

Chapter 4: InstallationSR2520 w/Guided Probe User's Manual

� � � � � � � � � �� �� �

�����
�������
������

�	,
��!�+

/	��!�-
�����

�*��-!�

���!13������,

����0��,

-��22����,

2�-���,

����0��	-

�,�	-����2�

2,+
2,+
2,+
2,+
2,+
2,+
2,+
2,+

/�-
�
�
�
�
�

�
�

�	

���

������ !"

������
�������

���
	�!�!�

�"#$%&'(%
�()*+,

����/��-�

2	�+�+����/�

�	

��0�

�	

���

	�!�!���
�"#$%&'(%
�()*+,

:4�*'),)��3(<,

	�!���
�$'%

�()*+,
	+(2.�

�(%23(++,3

���5

5

Figure 4-4. Installation of SR2520 w/Guided Probe Module.

4-6 SR2520 w/Guided Probe User's Manual

Rev. 05 Interface Technology

Chapter 4: Installation

(THIS PAGE INTENTIONALLY LEFT BLANK)

Published by
Interface Technology, Inc.

300 S. Lemon Creek Drive
Walnut, CA 91789

Appendix A 1

Issue 1Interface Technology

Error Codes

�������������������

Error Codes
Scope of Appendix If the SR2500 self-test fails, the following error code information is

written to the VXI datalow register:

100 (hex) RAM Test Error in Program RAM on Bank 1
101 (hex) RAM Test Error in Program RAM on Bank 2
102 (hex) RAM Test Error in Program RAM on Bank 3
103 (hex) RAM Test Error in Program RAM on Bank 4
200 (hex) RAM Test Error in Shared RAM, Bank 1, bits 7-0
201 (hex) RAM Test Error in Shared RAM, Bank 1, bits 15-8
202 (hex) RAM Test Error in Shared RAM, Bank 1, bits 23-16
203 (hex) RAM Test Error in Shared RAM, Bank 1, bits 31-24
204 (hex) RAM Test Error in Shared RAM, Bank 2, bits 7-0
205 (hex) RAM Test Error in Shared RAM, Bank 2, bits 15-8
206 (hex) RAM Test Error in Shared RAM, Bank 2, bits 23-16
207 (hex) RAM Test Error in Shared RAM, Bank 2, bits 31-24
300 (hex) IT9010M failed read/write acknowledge test
301 (hex) IT9010M failed read/write pattern test
400 (hex) Shadow RAM failed write/read test
600 (hex) ROM failed checksum test

Command Errors

0 "No Error"
-101 "Invalid character; Semicolon can't start command"
-103 "Invalid separator; Semicolon or colon expected"
-101 "Invalid character; Syntax error at second colon"
-101 "Invalid character; Syntax error at semicolon following colon"
-101 "Invalid character; Double semicolons not allowed"
-103 "Invalid separator; Asterisk found instead of separator"
-111 "Header separator error; Alpha after 488.2 common cmd invalid"
-101 "Invalid character; Double colons not allowed"
-101 "Invalid character; Colon found but no commands at a lower level"
-101 "Invalid character; Unknown in this context"
-101 "Invalid character' Double semicolons not allowed"
-103 "Invalid separator; Asterisk found instead of separator"
-103 "Invalid separator; Alpha found instead of separator"
-101 "Invalid character; Asterisk found instead of separator"
-158 "String data not allowed; No match found for parameter string"
-113 "Undefined header; A 488.2 common command was expected.
-114 "Header suffix out of range; Number after 488.2 cmd not allowed"

Data Low Register
Self-Test Error Codes

System Error Codes

Appendix A

Interface Technology

2 Error Codes

Issue 1

-113 "Undefined header; No match found for command"
-131 "Invalid suffix; Suffix not appropriate"
-113 "Undefined header; Question mark expected"
-101 "Invalid character; Unexpected character found after header"
-113 "Undefined header; Number attached to header not allowed"
-111 "Header separator error; A space separator was expected"
-131 "Invalid suffix; Suffix not appropriate for command"
-144 "Character data too long; Name is maximum of 8 chars"
-103 "Invalid Separator; Comma not found as expected"
-104 "Data type error; PIN LIST syntax <CnPn> or <CnPn-n> not found"
-104 "Data type error; Syntax error on number list parameter"
-104 "Data type error; Invalid Sample Mode, only EDGE or WINDow is allowed"
-104 "Data type error; Invalid OFormat Mode, only NRZ, RZ, RONE, RTC, or RI is allowed"
-104 "Data type error; Invalid field name, only 8 chars long allowed"
-104 "Data type error; Invalid test name, only 8 chars long allowed"
-104 "Data type error; Invalid test name"
-102 "Syntax error; Illegal operator, Command Macro's command does not support Not Equal operator, %s"
-102 "Syntax error; Invalid Command Macro's LABel keyword, %s"
-102 "Syntax error; Command Macro statement must be 'OUTput' or 'NOP' keyword, %s"
-102 "Syntax error; Command Macro statement contains invalid Command keyword, %s"
-102 "Syntax error; Command Macro statement contains incorrect operator, '==' or '<>' are valid, %s"
-102 "Syntax error; Command Macro statement's Right-side Expression must be an 8 bit number, %s"
-102 "Syntax error; Command Macro statement's Right-side Expression must be a 16 bit integer, %s"
-102 "Syntax error; NAME/LABEL must begin with an alpha character."
-102 "Syntax error; NAME/LABEL contains illegal character, only alpha, numeric, and '_' are allowed"
-102 "Syntax error; Unknown Algorithmic Macro command, %s"
-102 "Syntax error; SProgram, EProgram, ELoop, OUTput, CLEARError, RTSubroutine, and

CRTSubroutine Command Macros must not contain any parameter, %s\""
-102 "Syntax error; SCONDition Command Macro cannot have COUNt, BUS, and STRIgger as a parameter,

%s"
-102 "Syntax error; JMP and JSRoutine Command Macros must have a label in the parameter, %s"
-102 "Syntax error; Illegal Label/Subroutine name, 'ALL' is not a legal Label/Subroutine name."
-102 "Syntax error; SLoop and WLoop Command Macros must have some form of parameter, %s"
-102 "Syntax error; Command Macro must begin with '(', %s"
-102 "Syntax error; Command Macro must end with ')', %s"
-102 "Syntax error; Command Macro is missing ')' after the 'LABel <NAME>, %s"
-102 "Syntax error; Command Macro missing '(' before the '<PARAMETER>, %s"
-102 "Syntax error; Command Macro missing ')' after the '<PARAMETER>', %s"
-102 "Syntax error' Command Macro missing '(' before the '<EXPRESSION>', %s"
-102 "Syntax error; Command Macro missing ')' after the '<EXPRESSION>', %s"
-102 "Syntax error; SCONDition Command Macro must have some form of a parameter, %s"

Execution Errors

-224 "Illegal parameter value; Invalid conversion"
-224 "Illegal parameter value; Invalid base value"

Appendix A 3

Issue 1Interface Technology

Error Codes

-224 "Illegal parameter value; Undefined parameter"
-224 "Illegal parameter value; Invalid data type"
-222 "Data out of range; Value out of current radix bounds"
-222 "Data out of range; Baud rate not supported"
-222 "Data out of range; Data bits must be 7 or 8"
-222 "Data out of range; Stop bits must be 1 or 2"
-222 "Data out of range; Parity type not supported"
-241 "Hardware missing; Address generates bus/addr exception"
-224 "Illegal parameter value; Valid fill types are REP, INC, DEC, COM, ALT, WLKO, WLK1, or RAN"
-221 "Settings conflict; Undefined field name or field type is not available under this subsystem"
-221 "Settings conflict; Undefined test name"
-221 "Settings conflict; All available fields have been defined"
-221 "Settings conflict; All available tests have been defined"
-225 "Out of memory; Not enough Free vectors available for allocation" -REPEAT
-222 "Data out of range; Valid card numbers are 1-10"
-222 "Data out of range; Valid pin numbers are 1-32 and max number of pins is 32"
-222 "Data out of range; Valid channels are 1-32"
-221 "Settings conflict, No default field is defined"
-221 "Settings conflict; No working test is defined"
-222 "Data out of range; Invalid vector number"
-221 "Settings conflict; Test name is already defined"
-221 "Settings conflict; Field name is already defined"
-222 "Data out of range; Valid trace qual numbers are 1-8 and only up to 8 trace qualifiers can be entered"
-221 "Settings conflict; Not enough items were provided base on the count value."
-222 "Data out of range; Invalid EndLoop (EL) count, 1 and 2 are valid."
-222 "Settings conflict; No SProgram statement found in Command Macro"
-222 "Settings conflict; Too many StartLoop statements before an EndLoop statement at vector %s"
-222 "Settings conflict; Too many EndLoop statements in Command Macro at vector %s"
-222 "Settings conflict; No EProgram statement found in Command Macro"
-222 "Data out of range; Statement's parameter must be 1 to 65535."
-221 "Settings conflict; FIELd TYPE must be OUT or OT with OFORmat"
-222 "Data out of range; OFORmat delay exceeds period"
-222 "Data out of range; OFORmat 'pos/neg pulse width' exceeds 5 ns"
-222 "Data out of range; Max number of OFORmat delays (4) have been used for %s"
-222 "Data out of range; Card number exceeds the current number of SR cards in the system"
-222 "Data out of range; Rate speed must be 400 Hz - 50 MHz"
-222 "Data out of range; Valid group numbers are 1 - 4"
-241 "Hardware missing; IO card does not support Variable Voltage and Variable Threshold settings"
-222 "Data out of range; Value for upper Variable Voltage TTL signals are out of range"
-222 "Data out of range; Value for lower Variable Voltage TTL signals are out of range"
-222 "Data out of range; Value for upper Variable Voltage ECL signals are out of range"
-222 "Data out of range; Value for lower Variable Voltage ECL signals are out of range"
-222 "Data out of range; Value for Variable Voltage Threshold TTL signals are out of range"
-222 "Data out of range; Value for Variable Voltage Threshold ECL signals are out of range"
-241 "Hardware missing; Shared memory option is not installed."
-285 "Program syntax error; Learn encountered invalid format, Learn aborted"

Appendix A

Interface Technology

4 Error Codes

Issue 1

-241 "Hardware missing; Different Control Card was used on the LearnQ command"
-241 "Hardware missing; Different number of I/O cards were used on the LearnQ command"
-285 "Program syntax error; Learn encountered invalid Record header, Learn aborted"
-285 "Program syntax error; Learn command requires additional blocks of data to complete Learn session"
-221 "Settings conflict; Don'tCare syntax is not allowed on single memory fields"
-221 "Settings conflict; FIELd TYPE must be OUT, TRI or OT with ARMData"
-222 "Data out of range; TIMeout STARt or STOP value not valid"
-221 "Settings conflict; FIELd TYPE must not be OT nor ED with BLKVALue"
-254 "Media full; Vectors requested are greater than the Shared Memory size"
-221 "Settings conflict; Invalid pin definition; Algorithmic fields must follow the rule in the manual."
-222 "Settings conflict; Algorithmic field is trying to use pins that are assigned to other algorithmic fields."
-221 "Settings conflict; An algorithmic field must be used."
-221 "Settings conflict; Only 10 labels may be used per vector, %s"
-222 "Data out of range; Command Macro Jump Page statement must be between 1 to 32 (dec)"
-221 "Settings conflict; The label '%s' has already been declared"
-221 "Settings conflict; The label '%s' was not found"
-221 "Settings conflict; The label '%s' for the vector does not exist"
-221 "Settings conflict; A referenced label '%s' cannot be deleted"
-221 "Settings conflict; Command requires a Subroutine Label, %s"
-221 "Settings conflict; Subroutine Labels must begin on 32 vector boundary plus 1, %s"
-222 "Data out of range; SJMPPage Command Macro must have a jump page location of 1-32 (dec), %s"
-222 "Data out of range; Count must be 1 to size of test"
-222 "Data out of range' Test size must end on an even boundary"
-221 "Settings conflict; Command requires a normal Label, %s"
-222 "Data out of range; Test size must be greater than zero"
-222 "Data out of range; Sequence number must be between 1-16"
-222 "Data out of range; Sequence number must be between 1-8"
-221 "Settings conflict; Field name used in Trace Macros no longer exists"
-222 "Data out of range; Trace Qualifier number must be between 1-8"
-221 "Settings conflict; Trace Field type must be of Expect and/or Don'tCare (ED, E, or D) type"
-222 "Data out of range; Trace Qualifier Combination number must be between 1-8"
-221 "Settings conflict; Trace Macro STOP statement can't begin sequence"
-221 "Settings conflict; Trace Macro START statement can't follow START statement"
-221 "Settings conflict; Trace Macro STOP statement can't follow STOP statement"
-221 "Settings conflict; Trace Macro CONT statement can't follow STOP statement"
-222 "Data out of range; Valid occurrence numbers are 1-65535"
-221 "Settings conflict; Trace Macro Field type must be of Expect and Don'tCare (ED) type"
-221 "Settings conflict; STIMulus subsystem must have a field memory type of Output, Tristate, OT, or

ALGOutput"
-221 "Settings conflict; RECord subsystem must have a field memory type of Expect, Don'tCare, ED, or

ALGExpect"
-241 "Hardware missing; IO Card selected does not exist in the system."
-221 "Settings conflict; Cannot execute a DIAGnostic unless all tests are deleted"
-222 "Data out of range; Valid pin numbers are 1-32 and max number of pins is 320"
-222 "Data out of range; Value out of BASIC mode bounds"
-240 "Hardware error; BUS Master error, unable to gain control of VME BUS within the BUS Master

Appendix A 5

Issue 1Interface Technology

Error Codes

timeout value"
-222 "Data out of range; Value out of bus master timeout bounds"
-222 "Data out of range; Value out of clock level -5 V to 5 V bounds"
-222 "Data out of range; Value out of gate level -5 V to 5 V bounds"
-222 "Data out of range; Value out of trigger level -5 V to 5 V bounds"
-221 "Settings conflict; Field type must be EXPected, DONtcare, ED, RECord, or ALGExpected"
-222 "Data out of range; Max number of Sample delays (2) have been used for %s"
-221 "Settings conflict; Field type must be OUTput, TRIstate, OT, or ALGOutput"
-222 "Data out of range; Valid count numbers are 1-65535"
-222 "Data out of range; Max RATE for any algorithmic field of 16-bits, 24-bits, or 32-bits is 25 MHz"
-280 "Program error; Timeout during Learn process"
-285 "Program syntax error; Invalid command in shared memory header during Learn process"
-222 "Data out of range; Vector number is out of range"
-241 "Hardware missing; Size of shared memory block exceeds the actual size of the shared memory"
-221 "Settings conflict; Size of the current test(s) plus size of basic test exceeds memory left. Downsize the

basic test to meet requirements."
-213 "Init ignored; Only one test can be running at any given time"
-222 "Data out of range; Valid count numbers are 1-1000000"
-285 "Program syntax error; The necessary Learn records were received in an invalid order."
-225 "Out of memory; No more free DRAM memory to execute the command"
-284 "Program currently running; Can't execute command when a test is in 'RUNNING' or 'ARMED' state"

Device Dependent Errors

-350 "Queue overflow; Tail of output string is lost"
-310 "System error; Software bug - error number is out of range"

Query Errors

-410 "Query INTERRUPTED; Previous query output within string was overwritten"
-410 "Query INTERRUPTED; Previous query output lost"
-420 "Query UNTERMINATED; Output buffer was empty"

Appendix A

Interface Technology

6 Error Codes

Issue 1

(THIS PAGE INTENTIONALLY LEFT BLANK)

Appendix B 1

Issue 2
Jul 02

Interface Technology

Calibration Verification

This procedure describes a method of verifying the calibration of the
Interface Technology SR2500VV module. Standard laboratory test
equipment with NIST traceability is used to verify the performance of the
SR2500VV module. This procedure does not address the settings and/or
interconnection of the standard test equipment.

 The performance parameters verified are system clock accuracy and
stability, output levels and timing, and input threshold and timing. Proce-
dures are not provided for programmable thresholds of the external clock,
or external trigger or gate inputs. This procedure assumes that the
SR2500VV module is fully operational and connected to the Rail Genera-
tor and that the system has passed the built-in self test. The examples
given are for the CARD 1 Variable voltage card. The pin definitions and I/
O connectors will have to be changed to verify other Variable Voltage
cards in the system.

Test equipment meeting the following general requirements will be
necessary to perform the calibration outlined herein. In general, the actual
equipment used should be at least 4X more accurate than the allowable
tolerances being measured.

o 2.1 VXI Chassis ... with a slot 0 controller or embedded computer
capable of communicating with the SR2500VV module.

o 2.2 Counter/Timer, Dual Input ... for measuring frequency accu-
racy and stability, pulse width, and timing interval accuracy. The
counter should have a 500ps (with or without averaging) time interval
measurement accuracy. The frequency accuracy should be 312 Hz out
of 25 MHz or better. the minimum resolution required is 9 digits per
second gate. The HP5335A or HP5370B meet these requirements.

o 2.3 Digital Voltmeter ... with DC and True RMS measurement
capability. The DC accuracy should be 0.005% on the 10v range with
2.5 mv minimum resolution. The normal mode (ripple) rejection at
1KHz should be 60dB minimum. The HP3458A meets these require-
ments.

1.0 Introduction

2.0 Test Equipment
Required

�������������������

Calibration Verification

Interface Technology

2 Calibration Verification Appendix B

Issue 2
Jul 02

o 2.4 DC Power Supply ... adjustable 0 to 6 v DC voltage source. The
output should be setable to within +/- 10mv and should have less then
10mv noise and ripple. The outputs should isolated from chassis
ground. The HP6611C meets these requirements.

o 2.5 Break Out Cable ... Connection to the SR2500VV I/O pins is
done using a “break-out” cable. This is a mating connector with
approximately 3 in. of insulation displacement cable attached. The
end of the cable is split apart and each wire stripped back approxi-
mately 1/8 in. in order to make connection with the different test
equipment probes. Care should be taken to prevent the wires from
shorting together during test.

The procedures outlined herein are for a standard SR2510VV module with
32 channels. If the SR2510VV has additional channels (up to 96 per
module) the tests would be repeated for each block of 32 channels.

The basic sequence of operations will be to verify output driver level
accuracy using DC voltage readings. The output waveform timing is then
verified using a counter/timer. The input threshold levels are then verified
using a DC voltage source. Finally, the SR2500VV outputs are used to
verify the input timing.

The verification philosophy is to test a particular voltage parameter at
10%, 50%, and 90% of full scale. This will verify that the calibration for
any gain and offset errors is effective. If ranging or gain switching is used,
additional readings will be taken after changing the ranging values.

The SR2500VV outputs are connected to the DC meter using the break-
out test cable. Refer to figure 1 for the pin location of each output channel.
The output drivers are set in volts, and calibrated for no-load conditions.
The test sequence will allow measurement of the low data reference level
at 10%, 50%, and 90% voltage levels. The data pattern is changed to high
and the same settings are verified at the high level. After the output levels
are tested statically, they are tested dynamically using an AC RMS meter.

The static test DC meter reading must be within +/- 100mvDC for the low
and high reference output levels.

The dynamic output pattern will appear as a 1 KHz square wave with a 6
Volt P-P output, which the RMS must measure as 3.0vAC RMS within +/-
100mV.

3.0 Verification Procedure

3.1 Overview

3.2 Output Driver Level
Verification

Appendix B 3

Issue 2
Jul 02

Interface Technology

Calibration Verification

Sample Code to Execute the Static Output Test

Note
For all code samples comment lines begin with #!. Lines where a pause is required to verify a meter
reading, or wait for operator, begin with #@.

*RST

#! ;define a general purpose test name and output field
TEST:DEF OUT_TEST:SIZE 2
FIELD:DEF ALL_OUTS:TYPE OT:PIN C1P32-1

#! ;turn all output drivers on using rail A
STIMULUS:CONDITIONER:OFORMAT:VOLT A
SYST:RGEN 1:CONN 1
STIMULUS:COND:FET:CONN

#! FOR n = 0 TO 32 DO

#! ; force output pins data value to low (0)
STIMULUS:ARMDATA:MODE ON;PATTERN #H00000000

#! ; set rail A1 low to 10%
SYST:RGEN 1:RAIL A1:HIGH 6.5 ;LOW -2.25
INITIATE

#! ; measure here for low output= -2.25 +/- .10v
#@
abort

#! ; set rail A1 low to 50%
SYST:RGEN 1:RAIL A1:LOW .75 V
INITIATE

#! ; measure here for low output = .75v +/- .10v
#@
abort

#! ; set rail A1 low to 90%
SYST:RGEN 1:RAIL A1:LOW 3.75V
INITIATE

#! ; measure here for low output = 3.75 +/- .10v
#@
ABORT

#! ; force output pins data value to high (1)
STIMULUS:ARMDATA:MODE ON;PATTERN #HFFFFFFFF

Change 4

Interface Technology

4 Calibration Verification Appendix B

Issue 2
Jul 02

#! ; set rail A1 high to 10%
SYST:RGEN 1:RAIL A1:LOW -3.0;HIGH –0.65
INITIATE

#! ; measure here for high output= -0.65 +/- .10v
#@
ABORT

#! ; set rail A1 high to 50%
SYST:RGEN 1:RAIL A1:HIGH 2.75V
INITIATE

#! ; measure here for high output= 2.75V +/- .10v
#@
ABORT

#! ; set rail A1 high to 90%
SYST:RGEN 1:RAIL A1:HIGH 6.15V
INITIATE

#! ; measure here for high output= 6.15V +/- .10v
#@
ABORT

#! ; now do the same with the B rail

#! ;turn all output drivers on using rail B
STIMULUS:CONDITIONER:OFORMAT:VOLT B

#! FOR n = 0 TO 32 DO

#! ; force output pins data value to low (0)
STIMULUS:ARMDATA:MODE ON;PATTERN #H00000000

#! ; set rail B1 low to 10%
SYST:RGEN 1:RAIL B1:HIGH 6.5 ;LOW -2.25
INITIATE

#! ; measure here for low output= -2.25 +/- .10v
#@
ABORT

#! ; set rail B1 low to 50%
SYST:RGEN 1:RAIL B1:LOW .75 V
INITIATE

#! ; measure here for low output = .75v +/- .10v
#@
ABORT

Change 4

Appendix B 5

Issue 2
Jul 02

Interface Technology

Calibration Verification

#! ; set rail B1 low to 90%
SYST:RGEN 1:RAIL B1:LOW 3.75V
INITIATE

#! ; measure here for low output = 3.75 +/- .10v
#@
ABORT

#! ; force output pins data value to high (1)
STIMULUS:ARMDATA:MODE ON;PATTERN #HFFFFFFFF

#! ; set rail B1 high to 10%
SYST:RGEN 1:RAIL B1:LOW -3.0;HIGH –0.65V
INITIATE

#! ; measure here for high output= -0.65V +/- .10v
#@
ABORT

#! ; set rail B1 high to 50%
SYST:RGEN 1:RAIL B1:HIGH 2.75V
INITIATE

#! ; measure here for high output= 2.75V +/- .10v
#@
ABORT

#! ; set rail B1 high to 90%
SYST:RGEN 1:RAIL B1:HIGH 6.15V
INITIATE

#! ; measure here for high output= 6.15V +/- .10v
#@
ABORT

SYSTEM:PROGRAMLOOP CONTINOUS
INITIATE;*TRG

#! ;pause here for reading,move cable to all 32 outputs in turn
#! ;stop test when complete
#@

ABORT
#! ;operator now moves test cable to next output
#! ;sequence repeats 31 more times.

#! NEXT n
#! ;turn all output drivers off
SYST:RGEN 1:DISC 1

Change 4

Interface Technology

6 Calibration Verification Appendix B

Issue 2
Jul 02

#! Now move the rail output cable to OUTPUT 2 on the Rail
#! Generator and repeat the above test substituting A2 for A1
#! and B2 for B1.
#! Also use the command “SYST:RGEN 1:CONN 2” to enable the
#! second connector on the Rail Generator.
#! NOTE: Now that all of the pins on the variable voltage card
#! have been checked, there is no need to recheck all 32 channels
#! for the second rail generator connector. Just one pin will
#! do.
#! ;begin dynamic output RMS test here

*RST
TEST:DEF OUT_TEST:SIZE 2

FIELD:DEF ALL_OUTS:TYPE OT:PIN C1P32-1
SYST:FREQ 2.0 KHZ
FIELD:NAME ALL_OUTS:RADIX HEX

STIMULUS:VECTOR 1;COUNT 2;DATA:PATTERN 0,#HFFFFFFFF
STIMULUS:CONDITIONER:OFORMAT:MODE NRZ,0.0 NS
STIMULUS :CONDITIONER:OFORMAT:VOLT A
STIMULUS:COND:FET:CONN
#! ;SET HIGH TO +3.0 AND LOW TO -3.0

SYST:RGEN 1:RAIL A1:HIGH 3.0V;LOW -3.0V
SYST:RGEN 1:CONN 1

#! ;RUN TEST AND VERIFY EACH OUTPUT IS 3.0 VRMS +/- 100 MV
#! ;USING METER RMS AC FUNCTION MOVING TEST CABLE TO
#! :ALL 32 OUTPUTS WHILE TEST RUNS

SYSTEM:PROGRAMLOOP CONTINUOUS
INITIATE;*TRG

#! ;ALL 32 PINS SHOULD OUTPUT ALTERNATING 0-1 PATTERN
#! ;WITH .5 MS PER BIT FOR A 1 KHZ SQURE WAVE EFFECT
#! ;pause here for reading,move cable to all 32 outputs in turn
#! ;stop test when complete
#@

ABORT

#! ;repeat test for b rails

STIMULUS:CONDITIONER:OFORMAT:VOLT B
SYST:RGEN 1:RAIL B1:HIGH 3.0V;LOW -3.0V
SYST:RGEN 1:CONN 1

SYSTEM:PROGRAMLOOP CONTINOUS

Appendix B 7

Issue 2
Jul 02

Interface Technology

Calibration Verification

INITIATE;*TRG

#! ;pause here for reading,move cable to all 32 outputs in turn
#! ;stop test when complete
#@

ABORT

#! ;turn all output drivers off
SYST:RGEN 1:DISC 1

#! Now move the rail output cable to OUTPUT 2 on the Rail
#! Generator and repeat the above test substituting A2 for A1
#! and B2 for B1.
#! Also use the command “SYST:RGEN 1:CONN 2” to enable the
#! second connector on the Rail Generator.
#! NOTE: Now that all of the pins on the variable voltage card
#! have been checked, there is no need to recheck all 32 channels
#! for the second rail generator connector. Just one pin will
#! do.

Interface Technology

8 Calibration Verification Appendix B

Issue 2
Jul 02

3.3 Output Timing Reference Verification
3.3.1 Internal Timing Reference Verification
3.3.1 The Clock Out connector of the SR2500VV is connected to the timer/counter input to measure the
internal frequency reference. Measure the frequency of the system clock on channel A with a resolution of 1
Hz (25 ms gate on HP5335A counter). Passing criteria is from 25,012,812 Hz to 24,987,188 Hz. This criteria
includes the error of the internal clock source and the counter.

 Sample Code to Test the System Clock Frequency

Note
For all code samples comment lines begin with #!. Lines where a pause is required to verify a meter
reading, or wait for operator, begin with #@.

*RST
TEST:DEF FREQTEST:SIZE 2
SYST:PROG CONT
#! SET PLL TO HIGH END, 25MHZ
FREQ 25MHZ
INIT;*TRG
#! CONNECT FREQUENCY COUNTER TO FRONT PANEL “CLOCK OUT” CONNECTOR
#! MEASURE FREQUENCY, PASSING IS 24,999,375HZ TO 25,000,625HZ
#@
ABORT
#! SET PLL TO LOW END, 12.5MHZ
FREQ 12.5MHZ
INIT;*TRG
#! MEASURE 12,499,687.5HZ TO 12,500,312.5HZ
#@
ABORT
#! NOW VERIFY FREQUENCY DIVIDER, SET FREQUENCY TO 200HZ
FREQ 200HZ
INIT;*TRG
#! MEASURE 199.995HZ TO 200.005HZ

Appendix B 9

Issue 2
Jul 02

Interface Technology

Calibration Verification

3.3.2 Period Clock/Pulse Width Timing Verification
The SR2500VV output test cable from channel 00 is initially connected to the timer/counter start channel (A
on HP counters), and then the other 31 outputs will be connected in turn for time interval measurement.

Note
To measure a high or low pulse width on some HP counters, it is necessary to use the common switch to
tie the A and B input channels together, then set the start channel trigger edge opposite to the stop
channel trigger edge (start-rising, stop-falling for high pulse width, vice versa for low pulse width).

The timer/counter input channels are set for 0.0 volt input threshold level with 50 ohm termination. The test
program will output a 12.5 MHz square wave on each output with a +2.0 VDC high level and a -2.0 VDC low
level. At the 0 VDC threshold level, the high and low pulse widths should be symmetrical 40 ns nominal bit
times. The general procedure is;

1. Measure Output 00 pin signal pulse width using the counter’s time interval function. Using averaging if
necessary, the timer resolution should be .1 ns. The pulse width passing criteria is from 33.6 to 46.4 ns for
both rising and falling edge pulse widths.

2. Change the data rate to 400 Hz. Measure the pulse width as before with 1 ns resolution. Passing criteria is
from 2498752 ns to 2501256 ns.

3. Repeat for all 32 remaining channels.

Sample Program for Pulse Width Timing Verification

*RST

TEST:DEF OUT_TEST:SIZE 2
FIELD:DEF ALL_OUTS:TYPE OT:PIN C1P32-1

#! ;set bit rate at 25 MHZ - 40 ns bit width

SYST:FREQ 25 MHZ
FIELD:NAME ALL_OUTS:RADIX HEX
STIMULUS:VECTOR 1;COUNT 2;DATA:PATTERN 0,#HFFFFFFFF
STIMULUS:CONDITIONER:OFORMAT:MODE NRZ,0.0 NS

#! ;set high to +2.0v and low to -2.0v so counter
#! ;trigger input can be at 0v

SYST:RGEN 1:RAIL A1:HIGH 2.0V;LOW -2.0V
SYST:RGEN 1:CONN 1
STIMULUS:COND:FET:CONN
STIMULUS:CONDITIONER:OFORMAT:VOLT A
SYSTEM:PROGRAMLOOP CONTINUOUS

Interface Technology

10 Calibration Verification Appendix B

Issue 2
Jul 02

INITIATE;*TRG

#! ;all 32 pins should output alternating 0-1 pattern
#! ;with 40 ns per bit or a 12.5 MHz square wave
#! ;verify high pulse width and low pulse width within spec
#! ;pause here for reading, move cable to all 32 in turn
#! ;stop test when complete
#@

ABORT

SYST:FREQ 400Hz

INIT;*TRG

#! ;verify high pulse width and low pulse width within spec
#! ;pause here for reading, move cable to all 32 outputs in
#! ;turn
#@

*RST

Appendix B 11

Issue 2
Jul 02

Interface Technology

Calibration Verification

3.3.3 Output Skew

All the output channel edges are measured with respect to a reference (Output 00) and verified to have their
output channel delays within the timing skew tolerance of each other on a given SR2500VV module. The test
cable pair for the outputs being compared must be matched in length to within 0.25 inch.

The SR2500VV outputs will be set to +2.0 volts and -2.0 volts as in the previous test.

The general test sequence will be;

1. The timer/counter start channel input is connected to the Output 00 connector of the SR2500VV module.
The timer/counter stop channel input will be connected to each of the other SR2500VV outputs in turn,
starting with Output 01. The timer input thresholds are set to 0.0 volt. The timer is set for .1 ns resolution,
using averaging if necessary.

2. Data output pattern is set for all ones with Non-Return to Zero formatting. The system test rate is set for
12.5 MHz. The output assert time delay for Output 00 will be at 0 ns. For Outputs 01-32, the assert time
delay will be 10 ns. The 10 ns delay from the reference to the timed channel is to avoid negative time
measurements for channel skew.

3. The test pattern is output continuously with the timer/counter measuring the average time interval from
start input to stop input using at least a 1000 sample count. This time interval from the Output 00 pin will
be used as the reference for other pins. This reading can be stored as the counter reference, or offset, if
such a feature is available.

 4. Move counter stop bit test connector from Output 01 to next output pin (Output 02) and time interval as
before. The time interval shall be within +/- 3 ns of the reference interval from the first pin.

5. Repeat for remaining Outputs 03-32.

Interface Technology

12 Calibration Verification Appendix B

Issue 2
Jul 02

Sample Code to Test Output Skew Timing

*RST
TEST:DEF OUT_TEST:SIZE 2

#! ;channel one will be clocked at 0ns, all others at 10ns

FIELD:DEF CLK:TYPE OT:PIN C1P1
FIELD:DEF ALL_OUTS:TYPE OT:PIN C1P32-2

SYST:FREQ 12.5MHz

STIMULUS:VECTOR 1;COUNT 2;DATA:FIELD CLK;PATTERN #H0,#H1
STIMULUS:VECTOR 1;COUNT 2;DATA:FIELD ALL_OUTS;PATTERN #H0,#H7FFFFFFF
STIMULUS:CONDITIONER:OFORMAT:FIELD CLK;MODE NRZ,0NS
STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE NRZ,10NS

#! ;all 32 pins should output alternating 0-1 pattern
#! ;with 80 ns per bit and varying duty cycle
#! ; set high to +2.0v and low to -2.0v
#! ;trigger input can be at 0v

SYST:RGEN 1:RAIL A1:HIGH 2.0V;LOW -2.0V
SYST:RGEN 1:CONN 1
STIMULUS:COND:FET:CONN
STIMULUS:CONDITIONER:OFORMAT:VOLT A

SYSTEM:PROGRAMLOOP CONTINUOUS
INITIATE;*TRG

#! ;verify channel 1-32 variance from reference within spec
#! ;pause here for reading, move cable to all 32 in turn
#! ;stop test when complete
#@

ABORT

*RST

Appendix B 13

Issue 2
Jul 02

Interface Technology

Calibration Verification

3.3.4 Output Edge Placement Timing Verification

The output edge delay calibration is verified by timing the pulse widths and assert delays as they are varied
across their programmable range. The timer/counter time interval function is used to measure the pulse width
of each channel in turn. Counter input thresholds are again set for 0.0 volts, SR2500VV outputs for +/- 2.0
volts.

The general test sequence is;

1. The timer/counter start channel input is connected to the Output 00 connector of the SR2500VV module.
The timer/counter stop channel input will be connected to each of the other SR2500VV outputs in turn,
starting with Output 01. The timer input thresholds are set to 0.0 volt. The timer is set for .1 ns resolution,
using averaging if necessary.

2. Output data vectors are set for all ones with Return to Zero formatting. The test data rate is set for 6.25
MHz. Assert delay time for the channel 00 signal is set at 0 ns, width is 80 ns.

3. The test is run continuously, and the average delay from channel 00 and the channel under test (from
rising to rising edge) is measured using at least 1000 samples. Passing criteria is programmed delay +\-
3.0 ns (nominal +/- width error +/- 2 LSD of timer).

4. Repeat the above assert delay test while using the counter / timer to measure pulse width. Set the counter
/ timer to measure width from rising edge to falling edge of each channel under test. Verify pulse width
of 80ns +\- 3.0 ns (nominal +/- width error +/- 2 LSD of timer) on each channel across the entire assert
delay range. From 10ns to 150ns in 10ns steps.

Interface Technology

14 Calibration Verification Appendix B

Issue 2
Jul 02

Sample Code to Test Output Edge Placement Timing

*RST

TEST:DEF OUT_TEST:SIZE 2
FIELD:DEF CLK:TYPE OT:PIN C1P1
FIELD:DEF ALL_OUTS:TYPE OT:PIN C1P32-2
SYST:FREQ 6.25MHZ

STIMULUS:VECTOR 1;COUNT 2;DATA:FIELD CLK;PATTERN #H1,#H1
STIMULUS:VECTOR 1;COUNT 2;DATA:FIELD ALL_OUTS;PATTERN #H7FFFFFFF,#H7FFFFFFF
STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,10NS,80NS
STIMULUS:CONDITIONER:OFORMAT:FIELD CLK;MODE RZ,0NS,80NS

SYST:RGEN 1:RAIL A1:HIGH 2.0V;LOW -2.0V
SYST:RGEN 1:CONN 1
STIMULUS:COND:FET:CONN
STIMULUS:CONDITIONER:OFORMAT:VOLT A

SYSTEM:PROGRAMLOOP CONTINUOUS

INITIATE;*TRG

#! ;all 32 pins should output alternating 0-1 pattern
#! ;with 160 ns per bit time, varying duty cycle
#! ; set high to +2.0v and low to -2.0v
#! ;trigger input can be at 0 v

#! ;measure delay of 10ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@
ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,20NS,80NS
INIT;*TRG

#! ;measure delay of 20ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,30NS,80NS
INIT;*TRG

Appendix B 15

Issue 2
Jul 02

Interface Technology

Calibration Verification

#! ;measure delay of 30ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,40NS,80NS
INIT;*TRG

#! ;measure delay of 40ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,50NS,80NS
INIT;*TRG

#! ;measure delay of 50NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,60NS,80NS
INIT;*TRG

#! ;measure delay of 60NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,70NS,80NS
INIT;*TRG

#! ;measure delay of 70NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

Interface Technology

16 Calibration Verification Appendix B

Issue 2
Jul 02

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,80NS,80NS
INIT;*TRG

#! ;measure delay of 80NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,90NS,80NS
INIT;*TRG

#! ;measure delay of 90NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,100NS,80NS
INIT;*TRG

#! ;measure delay of 100NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,110NS,80NS
INIT;*TRG

#! ;measure delay of 110NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,120NS,80NS
INIT;*TRG

Appendix B 17

Issue 2
Jul 02

Interface Technology

Calibration Verification

#! ;measure delay of 120NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,130NS,80NS
INIT;*TRG
#! ;measure delay of 130NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,140NS,80NS
INIT;*TRG

#! ;measure delay of 140NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,150NS,80NS
INIT;*TRG

#! ;measure delay of 150NS, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT
#! ;Now set the counter / timer to measure width from rising
#! ;edge to falling edge of output under test.
#! ;The pulse outputs should maintain 80ns +/- 3.0 ns
#! ;while changing the assert delay from 10ns to 150ns
#! ;in 10ns steps.

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,10NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other

Interface Technology

18 Calibration Verification Appendix B

Issue 2
Jul 02

#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,20NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,30NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,40NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,50NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

Appendix B 19

Issue 2
Jul 02

Interface Technology

Calibration Verification

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,60NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,70NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,80NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,90NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,100NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.

Interface Technology

20 Calibration Verification Appendix B

Issue 2
Jul 02

#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,110NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,120NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,130NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,140NS,80NS
INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT

STIMULUS:CONDITIONER:OFORMAT:FIELD ALL_OUTS;MODE RZ,150NS,80NS

Appendix B 21

Issue 2
Jul 02

Interface Technology

Calibration Verification

INIT;*TRG

#! ;measure pulse width of 80ns, tolerance +/- 3.0 ns
#! ;of nominal on channel 01, move cable to all 30 other
#! ;channels in turn.
#! ;pause here for reading.
#@

ABORT
*RST

Interface Technology

22 Calibration Verification Appendix B

Issue 2
Jul 02

4.0 Input Threshold Verification

The input thresholds are verified using an adjustable DC voltage source.

The DC voltage source is connected to all 32 channels of the variable voltage card under test, and set to a test
value of 10, 50, and 90 percent of the input threshold range. The inputs will be set to record 1’s at a voltage
of percent of range (10,50,or 90) minus 100mv (variable voltage receiver accuracy). To record 0’s the rail
generator will be set to percent of range (10,50 or 90) plus 100mv (variable voltage receiver accuracy).

The general procedure is;

1. Connect all 32 of the SR2500VV inputs to an adjustable DC voltage source. Set the voltage to -2.06V
(10% of range).

2. The Rail Generator and Variable Voltage card will be setup so that the A and B thresholds will be used in
alternate 8 bit groups. The A thresholds are set to record 0’s, while the B threshold groups are set to
record 1’s. Set Rail Generator Thresholds A high and low to -1.96V , and B Thresholds to -2.16V .

3. Record and examine the recorded data. Returned pattern should be #HFF00FF00. Patterns differing from
this indicate bits that have failed.

4. Now the Rail Generator will be setup so that the A thresholds will record 1’s, and the B Thresholds will
record 0’s. Set Rail Generator Thresholds A high and low to -2.16V , and B Thresholds high and low to
-1.96V .

5. Record and examine the recorded data. Returned pattern should be #H00FF00FF. Patterns differing from
this indicate bits that have failed.

6. Repeat for +1.30 Vdc (50%) and 4.66 Vdc (90%).

Change 4

Appendix B 23

Issue 2
Jul 02

Interface Technology

Calibration Verification

Sample Code to Verify Input Threshold

#! ;Input threshold level test starts here

*RST
TEST:DEF IN_TEST:SIZE 10
FIELD:DEF ALL_OUTS:TYPE TRI:PIN C1P32-1
FIELD:DEF ALL_INS:TYPE REC:PIN C1P32-1
FIELD:DEF A_INS:TYPE REC:PIN C1P8-1
FIELD:DEF B_INS:TYPE REC:PIN C1P16-9
FIELD:DEF C_INS:TYPE REC:PIN C1P24-17
FIELD:DEF D_INS:TYPE REC:PIN C1P32-25
SYST:RGEN 1:CONN 1
STIM:VECT 1;COUNT ALL;DATA:FIELD ALL_OUTS;FILL:TYPE REP;PATTERN
#HFFFFFFFF;EXEC
SYST:FREQ 12.5MHZ
REC:TRAC:SEQ 1:FILTER DATA:REC ALWAYS
SYST:PROG 1
RECORD:CONDITIONER:SAMPLE:FIELD ALL_INS;MODE EDGE,10NS
RECORD:CONDITIONER:SAMPLE:field A_ins;THRES A
RECORD:CONDITIONER:SAMPLE:field B_ins;THRES B
RECORD:CONDITIONER:SAMPLE:field C_ins;THRES A
RECORD:CONDITIONER:SAMPLE:field D_ins;THRES B

SYST:RGEN 1:THRES A1:LOW -1.96V;HIGH –1.96V
SYST:RGEN 1:THRES B1:LOW –2.16V;HIGH –2.16V

#! set external voltage to –2.06v
#@

INIT;*TRG

#@
#! check for recorded pattern #HFF00FF00

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD ALL_INS;PATTERN?

#@

SYST:RGEN 1:THRES A1:LOW –2.16V;HIGH –2.16V
SYST:RGEN 1:THRES B1:HIGH –1.96V;LOW –1.96V

INIT;*TRG

#@
#! check for recorded pattern #H00FF00FF

RECORD:VECTOR 1;COUNT all;DATA:FIELD all_ins;PATTERN?

Change 4

Interface Technology

24 Calibration Verification Appendix B

Issue 2
Jul 02

#@

SYST:RGEN 1:THRES A1:HIGH +1.40V ;LOW +1.40V
SYST:RGEN 1:THRES B1:HIGH +1.20V ;LOW +1.20V

#! set external voltage to +1.30V
#@

INIT;*TRG

#@
#! check for recorded pattern #HFF00FF00

RECORD:VECTOR 1;COUNT all;DATA:FIELD ALL_INS;PATTERN?

#@

SYST:RGEN 1:THRES A1:LOW +1.20V ;HIGH +1.20V
SYST:RGEN 1:THRES B1:HIGH +1.40V ;LOW +1.405V
INIT;*TRG

#@
#! check for recorded pattern #H00FF00FF

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD ALL_INS;PATTERN?

#@

SYST:RGEN 1:THRES A1:HIGH +4.76V;LOW +4.76V
SYST:RGEN 1:THRES B1:HIGH +4.56V;LOW +4.56V

#! set external voltage to +4.66V
#@

INIT;*TRG

#@
#! check for recorded pattern #HFF00FF00

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD ALL_INS;PATTERN?

#@

SYST:RGEN 1:THRES A1:LOW +4.56V;HIGH +4.56V
SYST:RGEN 1:THRES B1:HIGH +4.76V;LOW +4.76V

INIT;*TRG

#@
#! check for recorded pattern #H00FF00FF

Change 4

Appendix B 25

Issue 2
Jul 02

Interface Technology

Calibration Verification

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD ALL_INS;PATTERN?

#@

SYST:RGEN 1:DISC 1

#! now switch cable to rail generator connector 2
#! and repeat test for connector 2
#@

SYST:RGEN 1:CONN 2
SYST:RGEN 1:THRES A2:LOW –1.96V;HIGH –1.96V
SYST:RGEN 1:THRES B2:LOW –2.16V;HIGH –2.16V

#! set external voltage to –2.06V
#@

init;*trg

#@
#! check for recorded pattern #HFF00FF00

RECORD:VECTOR 1;COUNT all;DATA:FIELD ALL_INS;PATTERN?

#@

SYST:RGEN 1:THRES A2:LOW –2.16V;HIGH –2.16V
SYST:RGEN 1:THRES B2:HIGH –1.96V;LOW –1.96V
INIT;*TRG

#@
#! check for recorded pattern #H00FF00FF

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD ALL_INS;PATTERN?

#@

SYST:RGEN 1:THRES A2:HIGH +1.40V;LOW +1.40V
SYST:RGEN 1:THRES B2:HIGH +1.20V;LOW +1.20V

#! set external voltage to +1.30V
#@

INIT;*TRG

#@
#! check for recorded pattern #HFF00FF00

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD ALL_INS;PATTERN?

Change 4

Interface Technology

26 Calibration Verification Appendix B

Issue 2
Jul 02

#@

SYST:RGEN 1:THRES A2:LOW +1.20V ;HIGH +1.20V
SYST:RGEN 1:THRES B2:HIGH +1.40V;LOW +1.40V
INIT;*TRG

#@
#! check for recorded pattern #H00FF00FF

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD ALL_INS;PATTERN?

#@

SYST:RGEN 1:THRES A2:HIGH +4.76V;LOW +4.76V
SYST:RGEN 1:THRES B2:HIGH +4.56V;LOW +4.56V

#! set external voltage to +4.66V
#@

INIT;*TRG

#@
#! check for recorded pattern #HFF00FF00

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD ALL_INS;PATTERN?

#@

SYST:RGEN 1:THRES A2:LOW +4.56V ;HIGH +4.56V
SYST:RGEN 1:THRES B2:HIGH +4.76V ;LOW +4.76V
INIT;*TRG

#@

#! check for recorded pattern #H00FF00FF

RECORD:VECTOR 1;COUNT ALL;DATA:FIELD ALL_INS;PATTERN?

#@
SYST:RGEN 1:DISC 2
*RST

Change 4

Appendix B 27

Issue 2
Jul 02

Interface Technology

Calibration Verification

4.2 Input Timing Verification

With confidence in the output levels, output timing, and input thresholds established, the outputs can now be
used to verify operation of the input timing. The outputs will be set to RZ format and be used to generate a
pulse that the inputs will record in edge mode. The assert time of the output pulses will be incremented in
10ns steps across a 160 ns period. The response will be setup to track the moving stimulus. The recorded
pattern will then be compared to what is expected. Any deviation from the expected pattern indicates a record
timing error.

The general procedure will be;

1. Set output data pattern for all channels to alternating one-zero, with a depth of 10 output vectors. Two 16
bit output fields are set up for RZ format with 30ns width. The two output fields are offset by 10ns from
each other. Output high level is set to +2V, and output low level is set to -2V.

2. The test frequency is set for 6.25 MHz, all input thresholds set for 0 volts. Two 16 bit Edge record fields
are setup. The edge fields will be offset from the stim fields by 70ns. The data is recorded and the
pattern compared to what is expected. Any bad bits indicate a timing problem in the response.

3. Increment stimulus and response delays by 10ns and compare patterns, until the entire 160ns period is
covered.

Sample SR2500(VV) Code to Verify Input Timing

*RST
TEST:DEF TA:SIZE 10
SYST:RGEN 1:THRES A1:HIGH 0.0;LOW 0.0
SYST:RGEN 1:RAIL A1:HIGH 2.0;LOW -2.0
SYST:RGEN 1:CONN 1
FIELD:DEF FOTALL:TYPE OT:PIN C1P32-1
STIM:COND:OFORMAT:FIELD FOTALL;VOLT A
FIELD:DEF FRECALL:TYPE REC:PIN C1P32-1
REC:COND:SAMPLE:FIELD FRECALL;THRES A
FIELD:DEF FLO:TYPE OT:PIN C1P16-1
FIELD:DEF FHI:TYPE OT:PIN C1P32-17

FIELD:DEF FRECLO:TYPE REC:PIN C1P16-1
FIELD:DEF FRECHI:TYPE REC:PIN C1P32-17
STIM:VECT 1;COUNT ALL;DATA:FIELD FLO;FILL:TYPE ALT;PATTERN #H0000;EXEC
STIM:VECT 1;COUNT ALL;DATA:FIELD FHI;FILL:TYPE ALT;PATTERN #H0000;EXEC
REC:TRAC:SEQ 1:FILTER DATA:REC ALWAYS
REC:COND:SAMP:FIELD FRECLO;EOFF 0
REC:COND:SAMP:FIELD FRECHI;EOFF 0
SYST:PROG 1
SYST:FREQ 6.25MHZ

Interface Technology

28 Calibration Verification Appendix B

Issue 2
Jul 02

STIM:COND:OFORM:FIELD FLO;MODE RZ,00NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,10NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,80NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,70NS
INIT;*TRG

#@
#! Check that test is in idle state so that rec query can be performed

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,10NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,20NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,90NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,80NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,20NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,30NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,100NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,90NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,30NS,30NS

Appendix B 29

Issue 2
Jul 02

Interface Technology

Calibration Verification

STIM:COND:OFORM:FIELD FHI;MODE RZ,40NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,110NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,100NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,40NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,50NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,120NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,110NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,50NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,60NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,130NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,120NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,60NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,70NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,140NS

Interface Technology

30 Calibration Verification Appendix B

Issue 2
Jul 02

REC:COND:SAMP:FIELD FRECLO;MODE EDGE,130NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,70NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,80NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,150NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,140NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,80NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,90NS,30NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,150NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,00NS;EOFF 1
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,90NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,100NS,30NS
REC:COND:SAMP:FIELD ALL;CLEAR
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,10NS;EOFF 1

Appendix B 31

Issue 2
Jul 02

Interface Technology

Calibration Verification

REC:COND:SAMP:FIELD FRECLO;MODE EDGE,00NS;EOFF 1
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,100NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,110NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,20NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,10NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,110NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,120NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,30NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,20NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,120NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,130NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,40NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,30NS
INIT;*TRG

Interface Technology

32 Calibration Verification Appendix B

Issue 2
Jul 02

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,130NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,140NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,50NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,40NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,140NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,150NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,60NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,50NS
INIT;*TRG

#@

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

#@

STIM:COND:OFORM:FIELD FLO;MODE RZ,150NS,30NS
STIM:COND:OFORM:FIELD FHI;MODE RZ,000NS,30NS
REC:COND:SAMP:FIELD FRECHI;MODE EDGE,70NS
REC:COND:SAMP:FIELD FRECLO;MODE EDGE,60NS
INIT;*TRG

#@

Appendix B 33

Issue 2
Jul 02

Interface Technology

Calibration Verification

TEST:NAME TA:STAT?

#! check for pattern #h00000000,#hFFFFFFFF,#h00000000,#hFFFFFFFF etc.

REC:VECT 1;COUNT 10;DATA:FIELD FRECALL;PATT?

Interface Technology

34 Calibration Verification Appendix B

Issue 2
Jul 02

Figure 1. I/O Channel Pin Locations.

�����
������

�	

���

���
� ,-,'
�(�������
��	.��

�4���($3)��(5�

�4���($3)��(5!

�4���($3)��(5
�4���($3)��(5
�85���. �

�$��
���"","<
�$��
���"=,!

�(> �(>

�((�((

�(� �(�

�(! �(!

�(" �("

��2 ��2

��= ��=

��< ��<

��' ��'

�� ��

��> ��>

��(��(

��� ���

��! ��!

��" ��"

�!2 �!2

�!= �!=

�!< �!<

�!' �!'

�! �!

�!> �!>

�!(�!(

�!� �!�

�!! �!!

�!" �!"

�"2 �"2

�"= �"=

�"< �"<

�"' �"'

�" �"

�"> �">

�"(�"(

�"� �"�

�"! �"!

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

9�+ 9�+

�)*����""

�)*����"!

�)*����"�

�)*����"(

�)*����">

�)*����"

�)*����"'

�)*���"<

�)*����"=

�)*����"2

�)*����!"

�)*����!!

�)*����!�

�)*����!(

�)*����(" �)*����!>

�)*����(! �)*����!
�$��
���!',�(
�$��
����>,(!

�)*�����2

�)*�����=

�)*�����<

�)*�����'

�)*�����

�)*�����>

�)*�����(

�)*������

�)*�����!

�)*�����"

�)*����!2

�)*����!=

�)*����!<

�)*����!'

�(2,6�����7��(31,��3'&2$2,

Change 4

Appendix B 35

Issue 2
Jul 02

Interface Technology

Calibration Verification

Figure 2. Breakout Cable.

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

9�+

�����$
��	���"","<

�����$
��	����>,(!

�����$
��	���"=,!

�����$
��	���!',�(

�)*�""

�)*�!'

�)*�"!

�)*�!<

�)*�"�

�)*�!=

�)*�"(

�)*�!2

�)*�">

�)*��"

�)*�"

�)*��!

�)*�"'

�)*���

'=

'<

''

'

'>

'(

'�

'!

'"

 2

 =

 <

 '

 >

 (

 �

 !

 "

>2

>=

><

>'

>

>>

>(

>�

>!

>"

(2

(=

(<

('

(

(>

((

(�

(!

("

�2

�=

�<

�'

�

�>

�(

��

�!

�"

!2

!=

!<

!'

!

!>

!(

!�

!!

!"

"2

"=

"<

"'

"

">

"(

"�

"!

�)*�"<

�)*��(

�)*�"=

�)*��>

�)*�"2

�)*��

�)*�!"

�)*��'

�)*�!!

�)*��<

�)*�!�

�)*��=

�)*�!(

�)*��2

�)*�!>

�)*�("

�)*�!

�)*�(!

�������
��

'=,3
����������

"!

'=

 �����	!�����"
������	������	#��$���	��%�	

�&����%�	&������

�
������	���

Change 4

Interface Technology

36 Calibration Verification Appendix B

Issue 2
Jul 02

(THIS PAGE INTENTIONALLY LEFT BLANK)

TechNotes

AppNotes & TechNotes
Note:

This section contains Application Notes and Technical Notes describing the
technical details and applications of the subject equipment.

SR2500 User's Manual AppNotes & TechNotes

Interface Technology Rev. 05

AppNotes &

(THIS PAGE LEFT BLANK INTENTIONALLY)

App/Tech Note: SR2500-01 1

OriginalInterface Technology

Selecting a VXI Test System for Bus Emulation

Selecting a VXI Test System
 for Bus Emulation

SR2500-01

Purpose and Scope Bus emulation is one of the most sophisticated applications for digital
testing and requires careful consideration when selecting a suitable test
system. This application note is intended for the test engineer or engineer-
ing manager actually involved with selecting such a test system.

We will begin by discussing the various aspects of our test problem which,
in this case, is the particular bus emulation test that we wish to perform.
Next, we will define the parameters that are important in making the test
... notably the timing parameters with which we must concern ourselves.
Finally, we will apply what we have learned to selecting a suitable
solution to the test problem ... namely, selecting a test system to perform
the bus emulation.

The entire process of defining the test and selecting a suitable tester is
presented in an easy-to-follow, step-by-step process that is both easy to
understand and easy to remember.

Once the principles of bus emulation are understood, we will touch on
some of the bonus features that are available on today's modern digital test
systems to enhance tester performance and produce better accuracy ...
features such as data formatting, programmable edge placement, and
algorithmic pattern generation. We will also touch briefly on tools for
evaluating UUT response ... like real-time compare, signature analysis,
guided probe, and fault directories. We will conclude our discussion with
a few words on interconnect cabling between the tester and the UUT (unit
under test).

To keep things simple, we’ll limit our discussion of bus emulation to the
ISA bus (Industry Standard Architecture). This bus is widely used in
personal computers, and is familiar to many test engineers. In the course
of our discussion, we will address several of the issues that you are likely
to encounter in testing a circuit board designed for use on an ISA bus.

Although the discussion here is limited to the ISA bus architecture, the
same principles apply as well to any other type of bus you are apt to
encounter.

The ISA Bus Is An Example

App/Tech Note

App/Tech Note: SR2500-01

Interface Technology

2 Selecting a VXI Test System for Bus Emulation

Original

In this discussion, we are going to emulate the ISA bus in performing a
simple memory read/write subroutine. This subroutine will include two
simple operations ...

1. select and latch a desired memory address and ...

2. write data to, or read data from, the selected memory address.

Fig 1 is a timing diagram showing the two operations. The first operation
(select and latch a desired memory address) is represented by the top three
waveforms:

o LA <23:17>
o BALE
o SA <19:0>

The second operation (writing to or reading data from the selected
memory address) is represented by the 4th and 5th waveforms, namely ...

o MEMR* or MEMW*
o SD <15:0>

(note the asterisk (*) after MEMR* and MEMW* that denote these
signals use negated logic.)

The bus clock (BCLK) is shown for reference only.

As depicted in Fig 1, the ISA bus has a 16-bit data bus (SD <15:0>), a 20-
bit address bus (SA <19:0>), and a 7-bit latchable address bus (LA
<23:17>), plus various control signals ... most notably, bus address latch
enable (BALE), memory read/memory write (MEMR*/MEMW*) and, of
course, the bus clock (BCLK). Just from this information alone, we
already know that the tester we select must provide at least 43 channels.
We also know that 16 of these channels must be bi-directional to support
the bi-directional data bus. The bi-directional channels require two types
of memory to provide state-by-state control of the output drivers ... that is,
a stimulus memory and a separate tristate control memory. Now, let’s
examine the timing parameters.

As the next step in selecting a test system for bus emulation, we must
carefully note all of the critical timing parameters involved, both for the
memory chip and for the ISA bus. These parameters can be obtained from
the ISA bus specification, and from the memory chip manufacturer's
technical literature, or from a timing chart such as presented in Fig 1. In
the order in which they occur, the parameters of interest are:

Step 1 --
Define What Is To Be Tested

Step 2 --
Determine Pin Requirements

Step 3 --
Determine Timing Parameters

App/Tech Note: SR2500-01 3

OriginalInterface Technology

Selecting a VXI Test System for Bus Emulation

1. Bus cycle duration

2. Clock period

3. Address latch (LA <23:17>) deassert time

4. Bus address latch enable (BALE) assert time

5. Address signal (SA<19:0>) assert time

6. Bus address latch enable (BALE) deassert time

7. Data signal (SD<15:0>) assert time

8. MEMR* / MEMW* assert time

9. Address latch (LA <23:17>) assert time

10. MEMR* / MEMW* deassert time

11. Data signal (SD<15:0>) deassert time

12. Address signal (SA<19:0>) deassert time

Bus Cycle Duration and Clock Period.

From our timing chart (Fig. 1), we note that the duration of a single bus
cycle is 470 ns. We also note that the duration of the bus clock period
(BCLK) is 40 ns ... which equates to a bus frequency of (1 / 40-9 = 256 =
25 MHz). We now have two of the 12 timing parameters we need.

Address Timing Parameters.

The first event that occurs when making a memory read/write on the ISA
bus is to select the memory address to which data will be written, or from
which data will be read. The timing events for this operation involve
three signals:

1. memory address latch (LA <23:17>)

2. bus address latch enable (BALE).

3. the address signal (SA <19:0>)

These three timing signals are shown as the top three waveforms of Fig 1.

Address Latch. See Fig 1. The first event that occurs when selecting a
memory address is to clear (negate) all of the address latch lines (LA
<23:17>). This occurs at time T0 when the seven address latch lines (LA
<23:17>) are deasserted, (Fig 1, top waveform.) Next, the bus address
latch enable (BALE) line is asserted at T = 50 ns into the bus cycle, (Fig
1, BALE waveform.) BALE pulse width is 60 ns ... that is to say, once
asserted BALE remains asserted for 60 ns. During the time BALE is

App/Tech Note: SR2500-01

Interface Technology

4 Selecting a VXI Test System for Bus Emulation

Original

asserted, the address signal (SA <19:0>) is placed on the bus. In more
specific terms, SA <19:0> is asserted 30 ns after BALE is asserted ... at
the mid point of the BALE pulse width. Our address has now been
selected and we are ready to write data to, or read data from, the selected
memory.

Memory Read/Write. Now that the desired address has been selected,
the next event to occur is the actual memory read or write. By again
referring to the timing chart (Fig 1) we see that the time interval between
BALE being deasserted and MEMR*/MEMW* being asserted is a relative
interval of 10 ns. This is represented by T1 and T9, respectively, both of
which depict time in relationship to T0 (i.e., T1=110 ns, T9 = 120 ns).

We now have all of the necessary timing parameters that we need to
conduct our bus emulation test, see Table 1.

With all of our critical timing parameters identified, we are ready to select
a suitable test system to perform the bus emulation test. Let’s say we
begin by selecting a common, garden variety, VXI digital word generator
... that is, one without data formatting or programmable edge placement.
This means that our tester will not provide us with any sort of control over
when a particular signal transition occurs, other than during an actual
clock transition. Hence, we must force all signal transitions to occur on
tester clock boundaries. And, just for argument’s sake, let’s say the data
rate of our pattern generator is 25 MHz (clock rate = 1 / 25,000,000 = 40
ns.)

Our digital word generator has a 25 MHz data rate. This means that any
signal transition will occur only on the 40 ns clock boundaries ... in other
words, only when the clock signal is asserted. Note, for instance, that the
timing difference between BALE being deasserted (T1 = 110 ns) and
MEMR* / MEMW* being asserted (T9 =120 ns) is only 10 ns. Since 10
ns is less than the 40 ns clock period of our word generator, we must wait
for the next clock transition before we can change the state of MEMR* /
MEMW* ... that is, we must extend T1 to the next 40 ns boundary at 120
ns (See Figure 2). Since we must wait an additional 30 ns for a clock
transition, the overall speed at which bus emulation can be performed is
reduced. And, what’s even worse, this effect is compounded every bus
cycle so that extending the timing of one signal results in a “ripple effect”
on all other signals referenced to it.

Programming state changes and edge timing by just using test vectors will
not only degrade bus timing, it will also quickly use up available memory.
Note that in Fig 1 there are a total of 12 bus signal transitions. To create
these same 12 transitions using a test system without programmable edge
placement will require 12 vectors, since we can only change state on a
clock boundary. In Fig 2, the basic timing wave form represented by Fig 1

Step 4 --
Select Test System

App/Tech Note: SR2500-01 5

OriginalInterface Technology

Selecting a VXI Test System for Bus Emulation

was recreated using the timing resolution of our simple 25 MHz tester that does not have programmable edge
placement or data formatting. The best timing resolution at this data rate is 40 ns ... which is the same as the
clock rate. In this example, twelve 40 ns vectors must be stored in the tester to complete a single 470 ns ISA
bus cycle (12 x 40 ns = or 480 ns.) In this case, two undesirable things occurred ...

1. the length of the normal bus cycle (470 ns) was increased from 470 ns to 480 ns and ...

2. since we must use 12 test vectors for each bus cycle, tester pattern memory depth has been reduced by a
factor of 12.

The degrading effect this has on the ability of the tester to test a bus device is quite dramatic; for example,
testing a block of memory mapped to a range of addresses on the bus. If 10 test vectors, for example, are
required to complete one bus cycle (instead of 12 as in our previous example), then a tester with a 64 K test
pattern depth is limited to testing only a (64 K / 10 = 6.4 K) portion of the RAM in any given test. Likewise,
to test a 1M RAM would require downloading new address and data patterns into the tester’s pattern memory
160 times (i.e., 1,024,000 / 6,400 = 160). Each download can represent a significant proportion of the total
time it takes to test the device.

Signal

LA<23:17>
BALE

SA <19:0>
SD <15:0>

BALE
MEMR*/MEMW*

LA<23:17>
MEMR*/MEMW*

SD <15:0>
BALE

SA <19:0>
BALE

Bus Cycle
BCLK

Description

Address Latch Deassert
Bus Address Latch Assert # 1

Address Signal Assert
Data Signal Assert

Bus Address Latch Deassert # 1
Memory Read / Memory Write Assert

Address Latch Assert
Memory Read / Memory Write Deassert

Data Signal Deassert
Bus Address Latch Assert #2

Data Signal Deassert
Bus Address Latch Deassert #2

Bus Cycle
Bus Clock (25 MHz)

Transition at ...

0 ns
50 ns
80 ns
90 ns
110 ns
120 ns
140 ns
360 ns
390 ns
400 ns
410 ns
460 ns

470 ns
40 ns

Table 1. ISA Bus Timing Parameters.

App/Tech Note: SR2500-01

Interface Technology

6 Selecting a VXI Test System for Bus Emulation

Original

Programmable Edge Placement A tester with programmable edge placement has the capability to delay
the occurrence of each signal on the bus relative to any other signal. This
overcomes the problem of having to wait for clock transitions to change
signal states by permitting signal transitions to occur at any point within
the tester's clock cycle. Hence, the otherwise difficult task of matching
setup and hold parameters, relative to strobes and read or write controls,
becomes a simple matter of programming.

Figures 1 and 2 illustrate two important criteria in emulating any digital
bus, including ISA. These are ...

1. the importance of the timing relationships between the various signals
and ...

2. the efficient use of tester resources, specifically the pattern memory.

Data formatting is the ability to apply a format pattern to a group of pins.
The most common digital formats are ...

o Return-to-Zero (RZ)
o Return-to-One (R1)
o Return-to-Inhibit (RINH); also called Return-to-Tristate

Fig 3 shows a bus cycle represented using only one test vector. In this
example, the tester we selected for our bus emulation test supports both
programmable edge placement and data formatting. A more efficient use
of memory is achieved because one ISA bus cycle can be represented by
just one test vector. This is possible because signals like BALE, which
has two pulses in the middle of the bus cycle, can be represented using an
RZ data format with a pulse delay of D1 for the first pulse, measured from
the beginning of the test cycle, and a pulse width of P1, followed by
another pulse with a delay of D2, (again referenced to T0 of the bus
clock) followed by a pulse width of P2. Thus, regardless of the length of
the ISA bus cycle, all signals and their phase relationships are easily
represented using a single test vector.

The benefits of performing a bus read or write using a single test vector
should be obvious. The aforementioned 64 K pattern memory in the
tester would now fully test 64 K of RAM. Also, the number of pattern
downloads needed to test one megabyte of RAM is reduced from a
previous high of 160 down to just 16.

In the case of RAM-backed pattern generation, even though the time to
test is dramatically reduced by using programmable edge timing and data
formatting, it still takes much longer to load a RAM test than the time
needed to run a RAM test. The ideal solution is to test the full address
range of the RAM after only a single pattern load. You would still need to
load the test program into the tester the first time, but further test loading
would be unnecessary. The time to test each 1M of RAM is only 0.5

Data Formatting

Algorithmic Pattern Generation

App/Tech Note: SR2500-01 7

OriginalInterface Technology

Selecting a VXI Test System for Bus Emulation

seconds. With no need to load new test programs to test successive blocks
of the RAM, test time is reduced by orders of magnitude. Modern digital
testers now provide algorithmic test functions that are especially well
suited for testing RAM, or other sequentially addressed locations, on a
bus. Algorithmic pattern generation lets you define the desired pattern as
an algorithm, or function, instead of as patterns stored in RAM (i.e.,
RAM-backed patterns). The patterns are generated in real-time, via a high
speed state machine, while the test is being executed. To use algorithmic
patterns, you initially define the starting address and an incrementing
pattern for the address bus, and an equally suitable pattern for the data bus
(e.g., an alternating 1’s and 0’s pattern.) Then, simply repeat the test
vector containing the algorithmic commands 1 million times. A full
megabyte RAM test is performed using less than ten test vectors. With
algorithmic digital testers, you can test very deep memory devices using a
small fraction of the testers available pattern memory. Since the whole
process can be represented in only a few test vectors, test download time
is proportionately reduced, again reducing the time to test the UUT.

Generating stimulus patterns for the ISA bus is only performing half of the
overall test. You also need a mechanism for determining how the UUT
responds to the test stimulus. Otherwise, it remains uncertain as to
whether or not the UUT is operating properly. Historically, the instru-
ments used for evaluating UUT response have been the oscilloscopes and
the logic analyzer ... two instruments, the output of which require human
interpretation to identify problems. These instruments are better suited to
the lab than to the production floor. What is needed on the production
floor is automated diagnostics that do not require frequent operator
intervention.

Perhaps the most obvious technique for evaluating UUT performance is
simply to record the UUT response into a memory specifically reserved
for that purpose, much like a conventional logic analyzer. Uploading the
captured UUT response data to a host computer for comparison with an
expected response can thus determine the pass or fail status of the UUT.
There are, however, two major limitations to this approach ... first, the
time it takes to move data to and from the tester’s pattern memory and
second, the time it takes for the host computer to perform a comparison
between the expected good response and the actual response from the
UUT. What we need is some method to conduct real-time comparisons of
expected and actual UUT responses. Fortunately, such a method already
exists.

Digital testers sometimes offer real-time compare built into the hardware.
By loading the known good (or expected) response into the tester and
enabling the real-time compare function, the pass/fail comparison is
performed in real-time as the test proceeds. The results of the test are thus
immediately available to the test system, indicating either a pass or fail of

Diagnostics Tools for
Evaluating UUT Response

Response Recording

Real-Time Compare

App/Tech Note: SR2500-01

Interface Technology

8 Selecting a VXI Test System for Bus Emulation

Original

the UUT. In addition to determining pass or fail, testers with real-time
compare usually provide a choice of recording either the raw response
from the UUT, or the results of the compare, which indicates the bit or bits
in error. Having this information available aids the diagnostic and trouble-
shooting stage of repairing a defective board.

Other response tools exist which aid the test operator in evaluating the
functionality of the ISA board, signature analysis, guided probes and fault
dictionaries being the more common.

When included as a feature of a digital tester, signature analysis generates
a checksum for each node being probed on the UUT. Since the stimulus
pattern provided by the tester is the same for all UUTs being tested, the
checksum for each respective node on the UUT should also be the same.
If a checksum mismatch occurs, a failure has occurred, and can usually be
traced back to the faulty component.

Cable routing and transmission line loss play an important role in deliver-
ing a usable signal from the digital tester to the bus being emulated. The
longer the interconnect cable between the tester and the UUT, the greater
the chance of signal degradation, and the greater the need for properly
terminating the transmission line. Some digital testers support only a
single type of termination, or a single impedance cable, which may not be
suitable for all applications. Coax cables, ribbon cables , and twisted
ribbon cables are used successfully in a wide variety of digital test appli-
cation, including bus emulation.

Coax Cables

Coax cables, with a characteristic impedance of 50 ohms, are routinely
used for higher speed logic, but are generally undesirable for TTL due to
the added load the termination resistor would place on the TTL driver, and
due to the size and weight of the shielded 50 ohm coax cables.

Ribbon Cables

Ribbon cables provide a much denser cable package than coax, and with a
characteristic impedance of 100 ohms, require less source current from the
driver for the terminating resistor. However, with ribbon cables, each
signal must include a ground return to prevent introducing ground noise
into the test environment, and provide some channel-to-channel shielding
to reduce crosstalk. The most common practice with ribbon cables is to
alternate signal and ground conductors across the width of the cable. The
tester that supports multiple I/O termination formats will usually deliver
better signal quality to the bus without requiring external signal condition-
ing.

Signature Analysis

Avoiding Cable Losses

App/Tech Note: SR2500-01 9

OriginalInterface Technology

Selecting a VXI Test System for Bus Emulation

Selecting a VXI test system for bus emulation is a four step process.

1. Define what is to be tested.

2. Determine pin requirements.

3. Determine timing parameters.

4. Select the test system.

In selecting a test system, you should always select a tester with a pattern
rate fast enough to test any UUT on the bus at actual operating speed.
Even more important than pattern rate, however, is a tester that provides
the features you will need to accurately emulate all of the critical timing
parameters of the bus, and one which will provide "on-the-fly" identifica-
tion of problems and quick problem isolation. Such features include ...

o Programmable edge placement
o Data formatting
o Algorithmic pattern generation
o Response recording with real-time compare
o Signature analysis
o Guided probe (optional)
o Fault directory (optional)

Finally, make sure that cabling between the tester and the UUT is kept
short and is properly terminated to minimize signal distortion and trans-
mission loss.

Summary

A
p

p
/T

ech
 N

o
te: S

R
2500-01

In
terface T

ech
n

o
lo

g
y

10
S

electin
g

 a V
X

I T
est S

ystem
 fo

r B
u

s E
m

u
latio

n

O
rig

in
al

����

� �����

��F! 6��G

���

	��F�D6�G

����H�(3
����H

	��F��6�G

���

��

��
���

�
 �

�!
��

��
��

��
!��

�D
�!� ���

 �

�E
���

��
��

���
 �

���%&
�'>,�/%&0

��/%(��?7� �A������(

��
��

 � �

�++����

�

/	����2,���-��,��-��,� /	����2,���-��,��-��,�

����

�++�������,�����-�1�+

Figure 1.
ISA Bus Memory Read or Write Timing Diagram.

A
p

p
/T

ech
 N

o
te: S

R
2500-01

11

O
rig

in
al

In
terface T

ech
n

o
lo

g
y

S
electin

g
 a V

X
I T

est S
ystem

 fo
r B

u
s E

m
u

latio
n

������

��F! 6��G

���

	��F�D6�G

����H�(3
����H

	��F��6�G

���

��

��
�!�

�
��

�!
E�

��
��

��
!��

�D
�!� ���

��

�E
�!�

��
E�

���
��

���%&
�'>,�/%&0

��/%(��?7� �A���- (��* 7���(

��
��

����

�

/	����2,���-��,��-��,�

� � � �� �

�����		

�����		����	�������

Figure 2.
Bus Emulation Timing Diagram for ISA Bus Read or Write Cycle Showing

Degradation Caused by Using Test System Without Data Formatting or Programmable
Edge Placement Capability (25 MHz Clock).

A
p

p
/T

ech
 N

o
te: S

R
2500-01

In
terface T

ech
n

o
lo

g
y

12
S

electin
g

 a V
X

I T
est S

ystem
 fo

r B
u

s E
m

u
latio

n

O
rig

in
al

���

���

��

��
���

�!
��

���%&
�'>,�/%&0

��/%(��?7� �A������(

�� ��
�! �!

Figure 3.
By Using Programmable Edge Placement and Data Formats,

a Bus Cycle Can be Simulated Using Just One Test Vector.

1

OriginalInterface Technology

Binary Pattern TransfersApp/Tech Note: SR2500-02

Binary Pattern Transfer

Introduction The SR2500 can handle both mapped and unmapped binary pattern
transfers. Programming commands for each type of transfer are as fol-
lows:

Commands

The commands for the mapped load form of the transfer is:

STIM:VEC <x>;COUNT <y>;DATA:FIEL <name>;BLOC:TYPE
MAP;PATT

or

REC:VEC <x>;COUNT <y>;DATA:FIEL <name>;BLOC:TYPE
MAP;PATT

where: x is the starting vector, y is the number of vectors to load and name
is the fieldname.

For either type of the command, there is no data returned via the Word
Serial Protocol path, the data is sent to/from the SR2510 A32 shared
memory via the VXI bus. The data in the shared memory is always in 32
bit words; the number of 32 bit words is determined by the COUNT
parameter. Regardless of how many bits are in the field being processed,
32 bits are sent to/from the A32 memory. There is no additional hand-
shaking required to move the data to/from the SR2510 A32 cache to the
Slot-0. The Slot-0 can determine when the SR2500 is done transferring
data to/from the A32 shared memory by checking the DIR bit in the
SR2510 Response register. When the DIR bit is set to ONE, the SR2500
has completed the transfer. The Slot-0 may access the A32 shared
memory with D8, D16 or D32 transfers, the SR2500 will always use D32
transfers. Fields of data types OT, ED or REC are not valid.

Pattern Load (PATT)

Before issuing the;PATT SCPI command the Slot-0 must load the
SR2510 A32 memory with data from a previously saved mapped type
pattern transfer. To accomplish this, first locate the address of the shared
memory, then use the memory move function provided with the Slot-0.
On a National Instruments Embedded controller the functions provided

Mapped
Binary Pattern Transfer

Slot-0 Activity

App/Tech Note

SR2500-02

2

Original Interface Technology

Binary Pattern Transfers App/Tech Note: SR2500-02

are called, GetDevInfoLong and VXImove. The data must be loaded into
the shared memory starting at the first address and continuing for COUNT
32 bit words and should be in Motorola byte order. Once the data has
been loaded into the shared memory, issue the SCPI command ...;PATT.
When the DIR bit is set by the SR2510, the command has been completed
and other SCPI commands may be issued.

Step 1- Load data into SR2510 A32 memory

Step 2- Issue ...PATT SCPI command

Step 3- Wait for DIR

Pattern Save (PATT?)

Issue the ...;PATT? command first, then wait for the DIR bit to be set by
the SR2510. When the DIR bit has been set save the data from the
SR2510 A32 memory. To save the data first locate the address of the A32
memory, then use the memory move function provided with the Slot-0.
On a National Instruments Embedded controller the functions provided are
called, GetDevInfoLong and VXImove. The data is available in the A32
memory starting at the first address and continuing for COUNT 32 bit
words and is in Motorola byte order.

Step 1- Issue ...;PATT? SCPI command

Step 2- Wait for DIR

Step 3- Save data from SR2510 A32 memory

Commands

The commands for the mapped load form of the transfer are:

STIM:VEC <x>;COUNT <y>;DATA:BLOC:TYPE NOMAP;CARD
<c>;MEM <m>;PATT

or

REC:VEC <x>;COUNT <y>;DATA:BLOC:TYPE NOMAP;CARD
<c>;MEM <m>;PATT

where: x is the starting vector, y is the number of vectors to load, c is the
card number and m is the memory type.

The commands for the mapped save form of the transfer is:

STIM:VEC <x>;COUNT <y>;DATA:BLOC:TYPE NOMAP;CARD
<c>;MEM <m>;PATT?

Non-Mapped
Binary Pattern Transfer

3

OriginalInterface Technology

Binary Pattern TransfersApp/Tech Note: SR2500-02

or

REC:VEC <x>;COUNT <y>;DATA:BLOC:TYPE NOMAP;CARD
<c>;MEM <m>;PATT?

where: x is the starting vector, y is the number of vectors to load, c is the
card number and m is the memory type.

For either type of the command, there is no data returned via the Word
Serial Protocol path, the data is sent to/from the SR2510 A32 shared
memory via the VXI bus. The data in the shared memory is always in 32
bit words, the number of 32 bit words is determined by the COUNT
parameter. There is no additional handshaking required to move the data
to/from the SR2510 A32 cache to the Slot-0. The Slot-0 can determine
when the SR2500 is done transferring data to/from the A32 shared
memory by checking the DIR bit in the SR2510 Response register. When
the DIR bit is set to ONE, the SR2500 has completed the transfer. The
Slot-0 may access the A32 shared memory with D8, D16 or D32 transfers,
the SR2500 will always use D32 transfers. Only fields of data types OUT,
TRI, EXP and DON are valid.

Pattern Load (PATT)

Before issuing the;PATT SCPI command the Slot-0 must load the
SR2510 A32 memory with data from a previously saved Nomap type
pattern transfer. To accomplish this, first locate the address of the shared
memory, then use the memory move function provided with the Slot-0.
On an National Instruments Embedded controller the functions provided
are called, GetDevInfoLong and VXImove. The data must be loaded into
the shared memory starting at the first address and continuing for COUNT
32 bit words and should be in Motorola byte order. Once the data has
been loaded into the shared memory, issue the SCPI command ...;PATT.
When the DIR bit is set by the SR2510, the command has been completed
and other SCPI commands may be issued.

Step 1- Load data into SR2510 A32 memory

Step 2- Issue ...;PATT SCPI command

Step 3- Wait for DIR

Pattern Save (PATT?)

Issue the ...;PATT? command first, then wait for the DIR bit to be set by
the SR2510. When the DIR bit has been set save the data from the
SR2510 A32 memory. To save the data first locate the address of the A32
memory, then use the memory move function provided with the Slot-0.
On a National Instruments Embedded controller the functions provided

Slot-0 Activity

4

Original Interface Technology

Binary Pattern Transfers App/Tech Note: SR2500-02

are called, GetDevInfoLong and VXImove. The data is available in the
A32 memory starting at the first address and continuing for COUNT 32 bit
words and is in Motorola byte order.

Step 1- Issue ...;PATT? SCPI command

Step 2- Wait for DIR

Step 3- Save data from SR2510 A32 memory

App/Tech Note: SR2500-03 1

OriginalInterface Technology

Pseudo-Random Bit Streams

Generating Pseudo-Random Bit Streams
Using SR2500 Algorithmic and Sequencing Features

Scope of Coverage The following information provides an example for generating Pseudo-
Random Bit Streams (PRBS) using the SR2500 Algorithmic and Sequenc-
ing features.

The SR2500 provides four algorithmic pattern generators on each 32
channel I/O module, which may be linked together to form 16, 24, and 32
bit patterns. Three algorithmic functions used in this example are:

1. Nonalgorithmic (NONA - load pattern from pattern RAM)

2. Shift-Left-Zero-Fill (SLEFTZ - shift all bits left and fill the LSB with
zero)

3. Shift-Left-One-Fill (SLEFTO - shift all bits left and fill the LSB with
one).

By creating a 24-bit algorithmic field that supports shifting functions, you
have a 24-bit shift register of which 23 bits are used.

The Exclusive OR (XOR) function is achieved by monitoring bits 18 and
23 from the output. This is done by physically connecting bit 18 output to
bit 18 input, and bit 23 output to bit 23 input, and then monitoring the bit
patterns. By monitoring both of these bits, you can change your test
sequence flow anytime, based on the combination of these two bits. The
normal shifting sequence is SLEFTZ. However, whenever bits 18 and 23
are "01" or "10," you branch to a program segment wherein the shifting
sequence is SLEFTO, thus creating an XOR function.

One important consideration that must be taken into account is the
SR2500 pipeline latency and branch delays. For each vector, the state
generated for all pins must be clocked through the SR2500 output pipe-
line. This pipeline is three clock cycles plus 60 ns. Also, for the state on
the input pins to be evaluated and acted on, the input data must be clocked
through the input pipeline. This pipeline is also three clock cycles plus 60
ns. Hence, the round trip takes six clock cycles plus 120 ns. Running at
25 MHz (40 ns period), this translates to a round trip delay of 9 clock
cycles (6 cycles of 40 ns plus 120 ns). To be certain that the output bits
can be detected, you must wait 9 clock cycles from the time the outputs
are changed until they are tested. In addition, a branch takes four clock
cycles if branching to an odd vector, and five clock cycles if branching to
an even vector. In this program example, each bit in the PRBS takes 16

Algorithmic Functions Used

XOR Function

Pipeline Latency
and Branch Delays

SR2500-03

App/Tech Note

App/Tech Note: SR2500-03

Interface Technology

2 Pseudo-Random Bit Streams

Original

clock cycles to generate, so the maximum bit rate is (25 MHz / 16), or (40 ns x 16). The table below provides
the basic test sequence and pattern generation concepts used in this example.

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

FILL_1

StartProgram
WordLoopuntil
SetCONDition
CLEARError
StartLoopuntil
WordLoopuntil

ConditionalJuMP
WordLoopuntil

EndLoop
EndProgram

OUTput
StartLoop
EndLoop

EndProgram

COUNt == 10

QUALifier && #b00000011

SystemTRIgger == TRUE
COUNt == 10

FILL_1
COUNt == 3

COUNt == 1

NONA - #h000000
NONA - #h000000
NONA - #h000000
NONA - #h000001
HOLDA
HOLDA
HOLDA
HOLDA
SLEFTZ
NONA - #h000000
NONA - #h000000
NONA - #h000000
SLEFTO
NONA - #h000000
NONA - #h000000

JMP/JSR
LABELVector

CMACRO
COMMAND

LOOP/BRANCH
CONDITION

ALGORITHMIC
PATTERN

A few points regarding this program ... the 10 cycle delay at vector six is to provide time for the output data to
work its way through both the output and the input pipelines. The three cycle delay at vector eight is to
compensate for the four clock cycles it takes to execute the conditional jump at vector seven. If the jump is
not taken, then the single clock cycle of vector seven, plus the three clock cycles at vector eight, provide the
same time delay as when the jump path is taken.

Another shortcut you can use in this example concerns looping. To branch from the end of a loop to the
beginning takes only a single clock cycle, in contrast to the four or five that a branch requires. However, each
StartLoop allows only a single EndLoop. By placing a StartLoop outside the program flow (vector 12), but
placing its associated EndLoop within the program flow (vector 13), you wind up with two end loops for the
start loop command at vector five. This allows faster execution of the PRBS sequence.

One last note, as previously mentioned, it takes 16 clock cycles to generate a single PRBS output. By chang-
ing the COUNt value at vector six, slower bit rates are realized. For example, assume you need to generate
PRBS patterns at 100 kHz rates. There are 250 40 ns periods in a single 100 kHz clock cycle. Since the
normal sequence through the PRBS requires 16 40 ns cycles, by adding an additional 234 cycle delay to the
sequence, a 100 kHz PRBS pattern is generated. Simply add 234 to the 10 cycle delay at vector six, for a
total delay of 244 (plus one for the StartLoop at vector five, plus 1 for the EndLoop at vector nine or 13, plus
four for the branch or the compensated "nonbranch"). It now requires 250 cycles to generate a single PRBS
output.

App/Tech Note: SR2500-03 3

OriginalInterface Technology

Pseudo-Random Bit Streams

To run the attached program, you will need to use a loop-back cable to connect bit 18 and 23 outputs to
inputs. The program example will mask out any other bits, so you can simplify the cable by looping all 32
channels on the I/O module. The serial output can be tapped off from bit 23's output, or from the unused bit
24, which is bit 23 delayed by one cycle.

Since the SR2500 is running at 25 MHz, yet the output rate is only 1/16th that speed, you have created some
extra fields to qualify when to save sampled data. As programmed, the SR2500 will record all 24 PRBS input
bits whenever the sample output bit is set. The sample output bit is set only on the LSEFTZ or SLEFTO
algorithmic vectors. The result is a single record sample for each unique PRBS pattern. This program is
good for generating serial PRBS patterns as well as parallel PRBS patterns.

Shift Register Creates CCITT Standard PRBS
Several standard PRBSs are in use for multiplexer testing and Consultative Committee on
International Telegraphy and Telephony (CCITT) Standard No. 0.151 gives a common
example. The figure below shows the block diagram of a circuit that outputs the CCITT
sequence.

A 23-stage shift register forms the basis for the circuit. An exclusive OR gate with inuts
connected to the outputs of flip-flop 18 and flip-flop 23 generates the input of the first D-type
flip-flop. The shift register outputs the PRBS automatically after preloading any bit pattern
except 000 0000 0000 0000 0000 0000. The bit sequence produced by this algorithm con-
sists of all different 23-bit-long words except all zeros. Thus, the circuit outputs 223-1 =
8,388,607 different words before the sequence repeats itself.

The 23 flip-flop shift register is the standard most commonly used, although other standards
consisting of 7, 10, 11, or 15 flip-flops are in use. Naturally, the higher the number of flip-
flops, the more different words are generated and, thus, the more "random" the overall bit
sequence. ... (Test & Measurement Europe/December-January 1996).

A 23-Stage Shift Register Outputs the PRBS Most Commonly Used.

,6
9
��>

#@
9
��>

#A
9
��>

,'
9
��>

,#
9
��>

,,
9
��>

'6
9
��>

',
9
��>

'#
9
��>

� ��)���	�������

�
�"���	�9��������

� ��

�����

App/Tech Note: SR2500-03

Interface Technology

4 Pseudo-Random Bit Streams

Original

SR2500 23-Bit PRBS Program Example:

TEST:DEF PRBs_23:SIZE 65500
SOUR INTERNAL
SYST:PROG 1
SYST:FREQ 2500000
STYT:CLOC:SOUR INTERNAL
SYST:CLOC:SLOP POS
SYST:CLOC:LEV 1.200000E+0
SYST:GATE:SOUR INT
SYST:GATE:POL NORM
SYST:GATE:LEV 1.200000E+0
TRIG:SOUR BUS
FIEL:DEF MSB_R:TYPE RECORD:PIN C1P23
FIELD:NAME MSB_R:RAD BIN
FIEL:DEF PSRB_0:TYPE ALGOUTPUT:PIN C1P24-1
FIELD:NAME PSRB_O:RAD HEX
STIM:COND:OFOR:FIEL PSRB_0;MODE NRZ, 0.000000E+0
STIM:VEC 1;COUN 20;DATA:FIEL PSRB_O;PATT #h000000, #h000000, #h000000,
#h000001, #h000000, #h000000, #H2C2C2C, #h000000, #h000000, #h000001,
#h000000, #h333333, #h000000, #h000000, #h000000, #h000000, #h000000,
#h000000, #h000000, #h000000
STIM:VEC 1;COUN 20;AMAC:FIEL PSRB_O;PATT NONA, NONA, NONA, NONA, HOLDA, HOLDA,
HOLDA, HOLDA, SLEFTZ, NONA, NONA, NONA, SLEFTO, NONA, NONA, NONA, NONA, NONA,
NONA, NONA
FIEL:DEF PSRB_R:TYPE RECORD:PIN C1P24-1
FIELD:NAME PSRB_R:RAD HEX
FIEL:DEF PSRB_R:TYPE TRISTATE:PIN C1P24-1
FIELD:NAME PSRB_T:RAD HEX
STIM:VEC 1;COUN 20;DATA:FIEL PSRB_T;PATT #h000000, #h000000, #h000000,
#h000001, #h000000, #h000000, #h000000, #h000000, #h000000, #h000001,
#h000000, #h333333, #h000000, #h000000, #h000000, #h000000, #h000000,
#h000000, #h000000, #h000000
FIEL:DEF SAMPLE_O:TYPE OT:PIN C1P26-25
FIELD:NAME SAMPLE_O:RAD BIN
STIM:COND:OFOR:FIEL SAMPLE_O;MODE NRZ, 0.000000E+0
STIM:VEC 1;COUN 20;DATA:FIEL SAMPLE_0;PATT #b00, #b00, #b00, #b00, #b00,
#b00, #b00, #b00, #b01, #b00, #b00, #b00, #b01, #b00, #b00, #b00, #b00,
#b00, #b00, #b00
FIEL:DEF SAMPLE_R:TYPE RECORD:PIN C1P26-25
FIELD:NAME SAMPLE_R:RAD BIN
FIEL:DEF XOR_R:TYPE RECORD:PIN C1P23,C1P18
FIELD:NAME XOR_R:RAD BIN
FIEL:DEF PSRB_E:TYPE ED:PIN C1P24-1
FIELD:NAME PSRB_E:RAD HEX
REC:COND:SAMP:FIEL PSRB_E;MODE EDGE, 1.500000E-8
REC:TRAC:QUAL 1:FIEL PSRB_E;PATT #bX0XXXX1XXXXXXXXXXXXXXXXX
REC:TRAC:QUAL 2:FIEL PSRB_E;PATT #bX1XXXX0XXXXXXXXXXXXXXXXX
REC:TRAC:QUAL 3:FIEL PSRB_E;PATT #hXXXXXX
REC:TRAC:QUAL 4:FIEL PSRB_E;PATT #hXXXXXX

App/Tech Note: SR2500-03 5

OriginalInterface Technology

Pseudo-Random Bit Streams

REC:TRAC:QUAL 6:FIEL PSRB_E;PATT #hXXXXXX
REC:TRAC:QUAL 7:FIEL PSRB_E;PATT #hXXXXXX
REC:TRAC:QUAL 8:FIEL PSRB_E;PATT #hXXXXXX
REC:VEC 1;COUN 20;DATA:FIEL PSRB_E;PATT #hXXXXXX, #hXXXXXX, #hXXXXXX,
#hXXXXXX, #hXXXXXX, #hXXXXXX, #hXXXXXX, #hXXXXXX, #hXXXXXX, #hXXXXXX,
#hXXXXXX, #hXXXXXX, #hXXXXXX, #hXXXXXX, #hXXXXXX, #hXXXXXX, #hXXXXXX,
#hXXXXXX, #hXXXXXX, #hXXXXXX
FIEL:DEF SAMPLE_E:TYPE ED:PIN C1P26-25
FIELD:NAME SAMPLE_E:RAD BIN
REC:COND:SAMP:FIEL SAMPLE_E;MODE EDGE, 1.500000E-8
REC:TRAC:QUAL 1:FIEL SAMPLE_E;PATT #bXX
REC:TRAC:QUAL 2:FIEL SAMPLE_E;PATT #bXX
REC:TRAC:QUAL 3:FIEL SAMPLE_E;PATT #bX1
REC:TRAC:QUAL 4:FIEL SAMPLE_E;PATT #bXX
REC:TRAC:QUAL 5:FIEL SAMPLE_E;PATT #bXX
REC:TRAC:QUAL 6:FIEL SAMPLE_E;PATT #bXX
REC:TRAC:QUAL 7:FIEL SAMPLE_E;PATT #bXX
REC:TRAC:QUAL 8:FIEL SAMPLE_E;PATT #bXX
RED:VEC 1;COUN 20;DATA:FIEL SAMPLE_E;PATT #b0X, #b0X, #b0X, #b0X, #b0X,
#b0X, #b0X, #b0X, #b00, #bXX, #b0X, #b0X, #b00, #b0X, #b0X, #b0X, #b0X,
#b0X, #b0X, #b0X
STIM:VEC 13;COUN 1;CMACRO:DEF ((LAB FILL_1)OUT (OUT)
STIM:VEC 1;COUN 20;CMACRO:DEF (SP (OUT)), (WL (OUT(COUN == 10))), SCOND(OUT(QUAL
&& #b00000011))), (CLEARE (OUT)), (SL (OUT(STRI == TRUE))),
(WL (OUT(COUN== 10))), (CJMP (OUT(FILL_1))), (WL (OUT(COUN == 3))), (EL
(OUT)), (EP (OUT)), (OUT(OUT)), (SL (OUT(COUN == 1))), (EL (OUT)), (EP (OUT)),
(OUT(OUT)), (OUT(OUT)), (OUT(OUT)), (OUT(OUT)), (OUT(OUT)), (OUT(OUT))
REC:TRAC:SEQ 1:DEF:FILT DATA:REC QCOM2
REC:TRAC:SEQ 1:DEF:CRC:CALC NEV
REC:TRAC:SEQ 1:DEF:ADVS:ON NEV:COUN 1
REC:TRAC:SEQ 1:DEF:JUMP 1:ON NEV
REC:TRAC:QCOM1 1, 2
REC:TRAC:QCOM2 3

App/Tech Note: SR2500-03

Interface Technology

6 Pseudo-Random Bit Streams

Original

(THIS PAGE INTENTIONALLY LEFT BLANK)

App/Tech Note: SR2500-04 1

OriginalInterface Technology

SR2500 Binary Test Load

This AppNote describes the process for learning tests from a properly
configured SR2500 subsystem using the Learn Query (LEARN?) com-
mand, and also describes the process of transferring the learned data back
to the SR2500 subsystem using the Learn (LEARN) command to config-
ure the instrument as before. The procedure presented here assumes the
reader is familiar with SR2500 programming using the SCPI message
based commands and further assumes that a valid configuration already
exists within the SR2500 subsystem prior to learning that configuration.

Note
This AppNote does not provide procedures for creating a binary file
from scratch for loading to the SR2500 subsystem using the LEARN
command.

Since each Slot-0 controller provides different function calls for accessing
A16 and A32 address locations and communicating with VXIbus instru-
ments, this AppNote does not attempt to address programming specifics.
Rather, it provides a conceptual procedure in the form of a flowchart with
a verbal description of each step. It is assumed that the reader has a basic
familiarity of the VXIbus and knowledge of the programming environ-
ment of their system.

The SR2500 binary LEARN? and LEARN commands make use of 1 MB
of memory located on the SR2510 Timing/Control Module. This memory
block (cache) is mapped to the VXIbus A32 memory space and may be
accessed using D8, D16, or D32 data transfers. There are a few address
locations within this A32 memory that are reserved for special functions
associated with the LEARN? and LEARN commands. Refer to the
following memory map for specific information. Note that the memory
map is configured as 16-bit wide data words.

Handshake: This word is used to indicate that a valid command ward has
been written to A32 base offset +2. It is used by both the Slot-0 controller
and by the SR2510.

0xFFF == Valid Command Word, Cache Full
0x000 == Transfer Executed, Cache Empty

Command Word: Indicates if the cache contains the last block of data to
transfer or if more data blocks remain. The command word is also used to
acknowledge the last block transfer:

SR2500 Binary Test Load SR2500-04
Scope of Coverage

General

Definitions

App/Tech Note

App/Tech Note: SR2500-04

Interface Technology

2 SR2500 Binary Test Load

Original

0xAC00 == Acknowledge Slot-0 Receipt of Data Block
0x0EAD == More Data Blocks Remain to be Transferred
0xCEAD == Last Data Block to Transfer

Buffer Size: The cache buffer size is stored at a 32-bit Long Word
(LWORD) at A32 base offset +4. This indicates the number of BYTES
resident in the A32 cache memory. Transfer of data between A32 cache
memory and local CPU RAM may be done in one transfer, or may require
many transfers, depending on the amount of data being transferred and the
size of the buffer allocated in the host.

Cache Start: Data is stored in the A32 cache memory starting at A32
offset +256.

Cache End: Physical end of the A32 cache memory. Note that data
stored in the cache does not necessarily occupy the entire cache space.

+0
+2
+4
+6
+8

o
o
o

+254
+256
+258

o
o
o

+1048576

Handshake Word
Command Word
Buffer Size -- Lword (1st 16-bits)
Buffer Size -- Lword (2nd 16-bits)

o
o
o

Cache Start (1st 2-bytes)
2nd 2-bytes of data
o
o
o
End of Cache

Address Description
(16 -------------- Data Bits -------------- 0)

A32
Base Offset

SR2510 A32 Memory Map

The address location of an instrument's A32 memory is determined by the
Resource Manager (RM) of the VXIbus system. Until the RM assigns an
A32 offset for that module, the A32 memory cannot be accessed. Since
the user does not predetermine the A32 address for the SR2510 module,
any program that makes use of the SR2510's A32 memory must include a
routine for determining the A32 base offset value assigned by the RM.
The most basic process for determining the A32 base offset is to read the

SR2510 A32 Memory Map

A32 Memory Offset

App/Tech Note: SR2500-04 3

OriginalInterface Technology

SR2500 Binary Test Load

instrument's OFFSET register. After successful completion of the RM
program, each instrument that requested A32 address space will have an
A32 base address value written to it's OFFSET register by the RM. The
OFFSET register is a 16-bit register located at the devices A16 base
address plus an offset of six. Knowing the SR2510's logical address
means that the OFFSET register may be accessed directly by a program.
The formula for determining the absolute address of a modules OFFSET
register, based on the modules Logical Address (LA) is as follows:

OFFSET Register Address = ((LOGICAL ADDRESS x 64) + 49152) +6

Therefore, an SR2510 with a LA of 7 would have an OFFSET register
address of:

((7 x 64) + 49152) + 6) = 448 + 49152 + 6 = 49606 (0xC1C6 hex)

The value read from address 49606 would be the modules A32 base
address.

Another method of acquiring a modules A32 base address is to use
function calls within the Slot-0 controller. Some Slot-0 controllers build a
table of instrument parameters during the RM process, and keep that
information in memory for access by the user, or an application program.
This table may be accessed via function calls in order to provide informa-
tion about a module, such as it's A32 base address. Again, each manufac-
turer provides their own Slot-o functions, so it is necessary to read the
manufacturer's manual to determine which functions are supported.

The flow charts illustrated in Figures 1 and 2 represent the process that
must be used to learn a test configuration from the SR2500 subsystem
(LEARN?), and the process for the SR2500 subsystem to learn the previ-
ous save configuration back from the host (LEARN), respectively.

Flow Charts

App/Tech Note: SR2500-04

Interface Technology

4 SR2500 Binary Test Load

Original

Figure 1.
Learn Query Flowchart.

�

�	���%'2'$+'�,�����'<3$39
/'@�%(2�$+3,$)9�'%'2'$+'�,)0

�	��������

�,2�	�!���
� !��$&,��))3,&&

�#,%��'&;��'+,�@(3��3'2'%A

�%'2'$+'�,��(>>$%)�2(
�"�����$%)��$%)&8$;,

2(��"����

	,%)�	����1(>>$%)
I	
	�6����=�F2,&2B%$>,GI

�,$)��$%)&8$;,��(3)

�&
�$%)&8$;,��(3)
�J*$+�2(��"����

=

�,$)��*@@,3�	'�,�2(
),2,3>'%,�28,�%*><,3�(@

<92,&�'%�28,�1$18,

�3$%&@,3�)$2$�@3(>
1$18,�2(�@'+,�&2$32'%A
$2�� !�<$&,�-�!��

�,$)��(>>$%)��(3)

	,2��(>>$%)�2(��"����
$%)��$%)&8$;,�2(��"����

�$&�$&2
�(>>$%)��(3)
�,$)��J*$+�2(

�"����
=

�+(&,��'&;��'+,

	������

�	

��

�	

��

App/Tech Note: SR2500-04 5

OriginalInterface Technology

SR2500 Binary Test Load

�

�%'2'$+'�,�����'<3$39
/'@�%(2�$+3,$)9�'%'2'$+'�,)0

�	��������

�,2�	�����
� !��$&,��))3,&&

�#,%��'&;��'+,�@(3��,$)'%A

�%'2'$+'�,��(>>$%)�2(
�"�����$%)��$%)&8$;,

2(��"����

	,%)�	����1(>>$%)
I	
	�6����I

�3$%&@,3�)$2$�@3(>
@'+,�2(�1$18,�&2$32'%A
$2�� !�<$&,�-�!��

	������

�	

��

	,2�28,��*@@,3�	'�,�2(
28,�%*><,3�(@�<92,&
:3'22,%�2(�28,�1$18,

�+(&,��'&;��'+,

�$&
28$2�28,

$&2��$2$��+(1;
2(�23$%&@,3

=

�&
�$%)&8$;,��(3)
�J*$+�2(��"����

=

�&
28'&�28,

$&2��$2$��+(1;
2(�23$%&@,3

=

	,2��(>>$%)�2(��"����
$%)��$%)&8$;,�2(��"����

�,$)��$%)&8$;,��(3)

	,2��(>>$%)�2(��"����
$%)��$%)&8$;,�2(��"����

��

�	

Figure 2.
Learn Command Flowchart.

 Get SR2510

App/Tech Note: SR2500-04

Interface Technology

6 SR2500 Binary Test Load

Original

(THIS PAGE INTENTIONALLY LEFT BLANK)

App/Tech Note: SR2500-05 1

OriginalInterface Technology

Data Formatting and Edge Timing

Data Formatting and Edge Timing SR2500-05
Understanding Data Rate The SR2500 can generate patterns at speeds up to 25 MHz. The term

"Data Rate" itself can be confusing, since manufactures often apply their
own meaning to the term. Generally, Data Rate is the speed at which data
patterns can be generated, and is a function of the clock period. A clock
period of 40 ns (25 MHz) means the state for each data channel in the
pattern sequence is held for 40 ns before advancing to the next state in the
sequence. However, to generate a clock using one of these data channels
requires two states ... one high and one low. So the effective rate of a
clock generated using a data channel, per the above 25 MHz example,
would be 80 ns or 12.5 MHz.

The SR2500 employs data formatting, which allows true 25 MHz data and
clock rates, or 50 MHz data rates and 25 MHz clock rates, depending on
which definition of data rate you choose to use. Combined with data
formatting is programmable edge timing, which allows the user to pro-
gram channel delay, pulse width, and channel-to-channel skew.

Data formatting is the ability to apply a format pattern to the data channels
for each test vector state, or cycle. The SR2500 supports the following
data formats, see Fig 1:

o NRZ Non-Return-to-Zero
o DNRZ Delayed Non-Return-to-Zero
o RZ Return-to-Zero
o RONE Return to One
o RC Return-to-Complement
o RI Return-to-Inhibit (return-to-tristate)

Figure 1 shows test cycles (vector 1, vector 2) and a single data channel
with no formatting applied (NRZ) and various data formats applied. The
defined output state for the data channel consists of a logic-1 (high) for
vector 1 and a logic-0 (low) for vector 2.

Data Formatting

App/Tech Note

App/Tech Note: SR2500-05

Interface Technology

2 Data Formatting and Edge Timing

Original

9���<
����	

����������
�#
3#�������<���4 ����������
�,

9���<

9���<

�	�����1������(�	
�����������.�	�
���

�
��
�11�0��
�	�����1��� 9���<

9���< 9���<
����
� ��.
�

���B�
�
=�	��=�	��

�
��
�11�0��
�.����=�	��

=�	��9���< =�	��
����
� ��.
�

���2��

9���<
=�	��

 ��.
����
��1���1�������
�

����
� ��.
����
��1���1���

=�	��

9���<
����	

�
��
�11�0��
����	���1�

 ��.
����
�
����������
�

 �!&

��'�(�	

(��'

�'

����

�

��

Figure 1.
Data Formats and Edge Timing.

NRZ: NRZ simply means that no formatting, nor edge timing, is applied to the defined output state. The
defined output state of the channel will change coincident with the master system clock on a cycle-by-cycle
basis. Edge timing for NRZ channels is fixed at 0 ns. In other words, when the system clock starts a new
period, the next state will be applied to the output pin.

DNRZ: DNRZ also does not apply any format to the output state, but it does allow a delay to be defined for
the channel, referenced to the start of the system clock period. NRZ is the same as DNRZ with a delay of 0
ns. The delay defined applies to every test vector cycle. So, if the DNRZ "delay" is programmed at 40 ns,
then the defined state for each test vector will be delayed by 40 ns, relative to the start of the vector cycle.
This concept is valid for all data format and edge timing parameters in the SR5000. DNRZ is useful for
deskewing channels at the UUT, and providing adequate setup and hold times for data and clock channels.

RZ: A data format of RZ means that during the delay time, and after the width duration, the output state is
forced to zero, regardless of the state programmed for the vector. Both the "assert" edge and the "return-to-
zero" edge are programmable with up to 5 ns resolution. The minimum width is 10 ns and the maximum
width is the clock period -10 ns. Again, the delay and width timing is identical for all test vector cycles.
Width may straddle clock boundaries. In other words, assert may be in vector 1 while return-to-zero is in
vector 2. Note that in vector 2 the defined state is 0, so RZ formatting is irrelevant. RZ is useful for generat-
ing active high strobes and for generating normal polarity clocks.

App/Tech Note: SR2500-05 3

OriginalInterface Technology

Data Formatting and Edge Timing

RONE: RONE (R1) is the opposite of RZ and means that during the delay time, and after the width duration,
the output state if forced to one, regardless of the state programmed for the vector. Both the "assert" edge and
the "return-to-zero" edge are programmable with up to 5ns resolution. The minimum width is 10 ns and the
maximum width is the clock period - 10 ns. Note that in vector 1 the defined state is 1, so RONE formatting
is irrelevant. RONE is useful for generating active low strobes and inverted polarity clocks.

RC: A return-to-complement format means the output channel will switch to the complement of the defined
state at the end of the width duration. During the delay time, the complement state from the previous vector
is held. A RC format will guarantee that there will be a transition for every test cycle, regardless of the
defined state. RC is useful for generating Manchester encoded data and generating clocks with phase/polarity
shifts.

RI: Return-to-inhibit will force the output to a high impedance (tristate) condition during delay and after
width (valid). Not to be confused with dynamic tristate control, which uses the tristate memory to control the
state of the driver on a cycle-by-cycle basis, RI allows a signal ... usually a bus ... to be enabled and disabled
all within a single test cycle. RI is ideal for driving bidirectional busses (e.g., a data bus), or for multiplexing
different pin groups onto a common bus, see Figure 2.

 �!&

�#�����������

3#�������<���4

 ���		
�����	 �����		
�����	

 ���		
�����	

�����		
�����	

�)�*��"���
�
+���,"$	�-

 ��$
�*��"���
�
+���,"$	�-

*��"����.��

�)�*��"����"/�
+�����,"$	�-

 ��*��"���"/�
+�����,"$	�-

Figure 2.
Dynamic RAM Row/Column

Addressing.

App/Tech Note: SR2500-05

Interface Technology

4 Data Formatting and Edge Timing

Original

(THIS PAGE INTENTIONALLY LEFT BLANK)

App/Tech Note: SR2500-06 1

OriginalInterface Technology

8086 Emulation, Board Level

Emulating the 8086 Microprocessor
For Board-Level Testing

SR2500-06

App/Tech Note

Download this App/Note directly from Interface Technology's
website, as follows:

1. Go to Interface Technology's website (www.interfacetech.com).

2. On the main page, click on "Application Notes"

3. On the Application Notes page, click on:

SR2500-06a
SR2500-06b

4. Download both sections of the AppNote to your hard drive, then
open the self-extracting files the same way you opened this User's
Manual file. Note: the password to open this AppNote is the
same as that used for the SR2500 manual.

App/Tech Note: SR2500-07 1

OriginalInterface Technology

SR2500 Binary Pattern Transfer Times

Binary Pattern Transfer Times SR2500-07
Introduction

Objective

App/Tech Note

A dynamic digital test instrument often represents the most demanding
module in a VXI test system in regards to the amount of data requiring
transfer on the backplane and the need for very high bus bandwidth. This
is due to the large pattern depth, the wide channel count and the common
practice of using multiple banks of memory behind each I/O pin, and the
need to move that data quickly. Take for example a system containing 128
bi-directional channels with an output memory, tristate memory, expected
pattern reference memory, input mask memory and a record memory
behind each pin. If the pattern depth for each pin is 64K deep, this
translates to 5MB of data to load all pattern memories.

While the VXI bus is rated for 10MB/S (D8) to 40MB/S (D32) data
transfer rates, or even 80MB/S using D64 as defined in the VXI 2.0
specification, slot 0 controllers and instruments often fall far short of these
ideals. And when message-based parsing is added into the equation, the
transfer rate suffers even greater.

The challenge for digital test instruments, and other VXI instruments with
similar data transfer requirements, is to move the data between compo-
nents within the system as quickly as possible. Nowhere is this more
important than in conditions where test time directly affects profitability.

This document will explore the data transfer option available to the
SR5000, SR5500 and SR2500 digital test instruments.

While the features discussed in this document apply equally to the
SR5000, SR5500 and SR2500, the SR5000 will be used throughout.

The VXI bus uses two primary protocols for transferring data between
devices on the bus; they are Register-based and Message-based. Register-
based operation mimics the operation of VME modules in that all memo-
ries and controls are mapped to an address on the bus, and are accessed
via direct memory bus read and bus write operations. Register-based
operation is the fastest method of getting or sending information on the
VXI bus. However, it requires a detailed knowledge of the memory map
of the instrument, so is much more difficult to work with.

Message-based instruments have a microprocessor on board which, among
other things, parses high level ASCII text command strings to control the
instrument and access memory. The text commands usually follow a
convention where the commands use an English-like structure, which
makes it easy to read and understand. However, those english commands
must be translated into action by the instrument. Parsing the commands

Features

App/Tech Note: SR2500-07

Interface Technology

2 SR2500 Binary Pattern Transfer Times

Original

takes time and results in slow execution. Also, the protocol for transfer-
ring ASCII commands across the VXI bus requires multiple bus cycles to
transfer 1 character. So, by its nature, message-based operation is much
easier to understand, but also much slower than register-based operation.

Word Serial Transfer of ASCII Command Strings.

The SR5000 bridges the gap between these two protocols by providing
message-based operation for test development and debug, and a register-
based type of operation for loading finished tests and updating patterns.
This document will detail the later function, high speed binary pattern
loading and reading.

While the SR5000 supports two modes of data pattern transfers, ASCII
and Binary, the binary mode itself supports two versions, mapped and
nomap. To understand the distinctions it is necessary to discuss the
concept of fields and pinmapping.

What’s in a Field

A Field is a logical grouping of channels, usually based on function. So
all signals associated with an address bus may be included in one field,
let’s say ADDR, while the signals associated with a data bus would be in
another field, perhaps called DATA.

Pin mapping is the process of routing the patterns stored in the pattern
memory to the appropriate pin on the front panel of the SR5000 I/O
module. It is typical for signals in a field to be mapped to adjacent pins on

Presentation

�����
������
��

�����
�
��1�
<

���
�����
��

��1����C
����
��+������

�)2
��	.��

�����.�

App/Tech Note: SR2500-07 3

OriginalInterface Technology

SR2500 Binary Pattern Transfer Times

a connector. However, this is not necessary. If it makes wiring a fixture
easier, the signals in a field may be mapped to pins on different connec-
tors, and even onto different I/O modules.

To Map or Not to Map

The binary Mapped data transfer uses the pin map defined for a field to
route the binary patterns to the appropriate card/connector. The mapping
process is controlled by the SR5000’s’internal microprocessor. So, while
the pattern data is transferred across the VXI bus in binary (i.e., register-
based), there is overhead involved in mapping the data once the VXI
transfer is complete. Overhead translates to time, so the mapped binary
transfer is not the fastest method available.

Mapped Binary Pattern Transfers

The other binary data transfer method bypasses the pin mapping process,
eliminating the microprocessor overhead associated with the mapping, and
is called the Nomap process. When transferring data patterns using the
nomap format, the pin mapping is bypassed. Instead the patterns are
loaded directly to the specified pattern memory on the specified card.
While the fastest method of getting data patterns into and out of memory,
it has drawbacks in other areas.

First, if pins in a field are not arranged in sequential order, you must
perform the pinmap shuffle in the host computer. This is often not a major
hindrance as PC’s are typically several orders of magnitude faster than the
processor used in the SR5000. Also, the process is usually done once and
saved to disk for future use, unless the data patterns are generated dynami-

����
<
������
��

�����
�
��1�
<

���
���

�6,
 ��

��1����C
����
��+������

�)2
��	.��

�����.�

App/Tech Note: SR2500-07

Interface Technology

4 SR2500 Binary Pattern Transfer Times

Original

cally. In that case an algorithm would need to be developed to accommo-
date the mapping dynamically, which would likely still be faster than the
internal algorithm. Second, the nomap process works ONLY with 32 bit
wide patterns. In other words, the SR5000’s internal memory structure is
arranged in 32 bit wide words. The nomap transfer loads or reads all 32
bits in the designated memory (Output, Tristate, Expect, Mask or Record).
Those bits may be part of the same field, different fields, or may not be
used at all. Regardless, they are all accessed and transferred across the
bus.

Binary Pattern Transfers, sans Pin Mapping

So, What’s The Difference?

The best way to illustrate the difference between ASCII pattern loading,
Binary Mapped pattern loading and Binary Nomap pattern loading is to
give some examples. The table below demonstrates the time required to
load a 32 bit wide pattern to one of the pattern memories. This is repre-
sentative of loading the Output, Tristate, Expect or Mask memory, or
reading from the Record memory. To load all of the OTEM memories on
a single I/O module, you would multiply the Pattern Load Time by four.

����
<
������
��

�����
�
��1�
<

�6,
 ��

��1����C
����
��+������

�)2
��	.��

�����.�

App/Tech Note: SR2500-07 5

OriginalInterface Technology

SR2500 Binary Pattern Transfer Times

System
Configuration

50 MHz 486
Embedded

50 MHz 486
Embedded

50 MHz 486
Embedded

550 MHz PIII
w/MXI II

Pattern Load
Method

Word Serial

Binary Mapped

Binary NoMap

Binary NoMap

VXI Bus
Transfer

N/C

800 ms

800 ms

28 ms

Module-to-Module
Transfer

N/C

00:16.90

450 ms

450 ms

Pattern
Load Time

01:00.00

00:17.70

00:01.25

470 ms

No attempt was made to calculate the time to transfer the ASCII characters across the VXI bus using the
Word Serial method. The load time is the cumulative time for transferring the ASCII characters, parsing the
command and loading the pattern memory.

Using the binary pattern load method involves a two-step process; transferring the binary data from the host
PC to the A32 cache memory on the timing and control module, and then moving the data from the cache
memory to the appropriate pattern memory on the I/O module. The cache on the timing and control module is
mapped to A32 address space, so a high-speed block mover operation can be used to load the cache. Once the
cache is loaded, a command to the timing and control module instructs that module to become the bus master,
read the data from the cache – using the internal microprocessor bus – and transfer the data across the VXI
bus to the slave I/O module. The process is reversed to when performing a binary read. There are two
interesting facts indicated by the table.

First, the VXI bus data transfer time is the same for Mapped and NoMap operation. The overall time differ-
ence between the two methods is due to the overhead of pin mapping. Refer to the Mapped and NoMap times
for the 50 MHz 486. The NoMap process is nearly 15 times faster than the Mapped method. The second
interesting fact is that the speed of the host PC, and the method of connecting it to the VXI bus, can play a
major role in determining overall transfer time. Refer to the 486 NoMap time and the 550 MHz PIII NoMap
time. The Module transfer times are the same, while the VXI bus transfer times are very different. The
overhead of the slower 486 processor, combined with the slower VXI bus speeds of the older embedded
computer combine to reduce the transfer speed by over 2 and a half times. Other factors can affect overall
performance, such as the operating system, how well the instrument drivers are written and the number of
software layers between the user and the instrument. This illustrates that importance of considering the
whole system when determining optimal performance, not just one or two components.

The PIII/MXI II values were generated using a Dell Latitude laptop with a 550 MHz PIII processor, 192MB
of RAM and a PCI MXI II installed in a docking station. The system was running under the Microsoft
Windows NT operating system and the instrument control was performed using National Instruments
LabWindows CVI and the SR5000 VXI Plug & Play drivers distributed with the SR5000. A partial source
listing is provided below.

App/Tech Note: SR2500-07

Interface Technology

6 SR2500 Binary Pattern Transfer Times

Original

For most instruments designed to operate on the VXI bus, where the
volume of bus traffic is minimal, message-based Word Serial operation is
adequate. But for instruments, like the SR5000, that push the bandwidth
of the bus, Word Serial may become a performance bottleneck. In these
situations, instruments that support direct memory reads and writes offer
the highest performance. And if the instrument can blend the high level
benefits of message-based operation with the high performance benefits of
register-based operation, you have the best of both worlds.

Conclusion

App/Tech Note: SR2500-07 7

OriginalInterface Technology

SR2500 Binary Pattern Transfer Times

Partial Source Listing:
vxi_stat = InitVXIlibrary ();
sr_stat = itsrXXX0_init (“VXI::2::INSTR”, VI_TRUE, VI_TRUE, &sr5k);
Cls ();

// Get the A32 offset address of the Timing Control Module
sr_stat = GetDevInfo (2, 12, &a32_off);
data = calloc (65536, 4);
vxi_stat = VXImove (19, a32_off, 16, (ViUInt32)data, 65500, 4);

// RESET the instrument
sr_stat = itsrXXX0_reset (sr5k);

// Load the TPS program
sr_stat = itsrXXX0_load_scpi_cmd_file
(sr5k,”C:\\Vxipnp\\WinNT\\Itsrxxx0\\bench.tps”);

// Test the FILL INCREMENT function
sr_stat = itsrXXX0_fill_data
(sr5k, itsrXXX0_STIMULUS, “F_OUT”, 1, 65500, “#h0”, 1,itsrXXX0_FILL_INCREMENT);

// Test the BLOCK NOMAP pattern query function
sr_time[0] = Timer();
for(i=0;i<100;i++)

sr_stat = itsrXXX0_send_cmd
(sr5k, “STIM:VECT 1;COUN ALL;DATA:BLOCK:TYPE NOMAP;CARD 1;MEMORY
OUTPUT;PATTERN?”);

sr_time[1] = Timer();
p_time(i, sr_time[0], sr_time[1], “32 X 65500 NOMAP PATTERN? QUERY”);

// Test the VXI BLOCK MOVE function
sr_time[0] = Timer();
for(i=0;i<1000;i++)

sr_stat = VXImove (19, a32_off, 16, (ViUInt32)data, 65500, 4);
sr_time[1] = Timer();
p_time(i, sr_time[0], sr_time[1], “32 X 65500 Block Move”);

printf(“Data Pattern Read:\n”);
for(i=0;i<8;i++)

printf(“%08X “,data[i]);
printf(“...\n...”);

for(i=65492;i<65500;i++)
printf(“%08X “,data[i]);

printf(“\n\n”);

// Place other tests here....

sr_stat = itsrXXX0_close (sr5k);

App/Tech Note: SR2500-07

Interface Technology

8 SR2500 Binary Pattern Transfer Times

Original

vxi_stat = CloseVXIlibrary ();
sr_chr = getchar ();

}

void p_time(int i,double t1, double t2, char *s)
{

printf(“Time to execute %i %s functions: %f\n”,i,s,t2-t1);
printf(“Average of each iteration of %s: %f\n\n”,s,(t2-t1)/i);
t1 = Timer();
do

t2 = Timer();
while(t2 - t1 < 1);

}

TPS File:
TEST:DEF BENCH:SIZE 65500

SYST:TEST BENCH

FIELD:DEF F_OUT:TYPE OUT:PIN C1P32,C1P31,C1P30,C1P29,C1P28,C1P27,C1P26,C1P25,C1P24,C1P23,
C1P22,C1P21,C1P20,C1P19,C1P18,C1P17,C1P16,C1P15,C1P14,C1P13,C1P12,C1P11,C1P10,C1P9,C1P8,
C1P7,C1P6,C1P5,C1P4,C1P3,C1P2,C1P1
FIELD:DEF F_TRI:TYPE TRI:PIN C1P32,C1P31,C1P30,C1P29,C1P28,C1P27,C1P26,C1P25,C1P24,C1P23,
C1P22,C1P21,C1P20,C1P19,C1P18,C1P17,C1P16,C1P15,C1P14,C1P13,C1P12,C1P11,C1P10,C1P9,C1P8,
C1P7,C1P6,C1P5,C1P4,C1P3,C1P2,C1P1
FIELD:DEF F_EXP:TYPE EXP:PIN C1P32,C1P31,C1P30,C1P29,C1P28,C1P27,C1P26,C1P25,C1P24,C1P23,
C1P22,C1P21,C1P20,C1P19,C1P18,C1P17,C1P16,C1P15,C1P14,C1P13,C1P12,C1P11,C1P10,C1P9,C1P8,
C1P7,C1P6,C1P5,C1P4,C1P3,C1P2,C1P1
FIELD:DEF F_MSK:TYPE DON:PIN C1P32,C1P31,C1P30,C1P29,C1P28,C1P27,C1P26,C1P25,C1P24,C1P23,
C1P22,C1P21,C1P20,C1P19,C1P18,C1P17,C1P16,C1P15,C1P14,C1P13,C1P12,C1P11,C1P10,C1P9,C1P8,
C1P7,C1P6,C1P5,C1P4,C1P3,C1P2,C1P1
FIELD:DEF F_REC:TYPE REC:PIN C1P32,C1P31,C1P30,C1P29,C1P28,C1P27,C1P26,C1P25,C1P24,C1P23,
C1P22,C1P21,C1P20,C1P19,C1P18,C1P17,C1P16,C1P15,C1P14,C1P13,C1P12,C1P11,C1P10,C1P9,C1P8,
C1P7,C1P6,C1P5,C1P4,C1P3,C1P2,C1P1

App/Tech Note: SR2500-08 1

OriginalInterface Technology

Serial EEPROM Test with I2C Bus Emulation

Serial EEPROM Test
With I2C Bus Emulation

SR2500-08

Serial EEproms
and I2C operation

App/Tech Note

As with most technological advances, the need for increased functionality
requires more memory. Preferably, memory that is less expensive and in a
smaller package. EEproms help provide the solution to such a demand.
Along with the increased functionality for memories comes the need for a
bus that will simply communicate with these memories. The I2C (Inter-
integrated circuit) which was originally introduced by Phillips for com-
munication between IC’s in consumer electronic devices, is the industry
leader in serial Eeprom bus protocol. Engineers in various markets
including, consumer, automotive, telecom and industrial markets are very
familiar with the I2C bus. This document sets out to describe a simplified
customer application of how I2C protocol can be emulated with the
proper digital test equipment to test the ever-changing market of
EEproms.

For serial EEproms there are generally two types of bus communications
2-wire or 3-wire. A 2-wire product is utilized in applications that require
an I2C bus, noise immunity, or have limited microcontroller I/O pins
available. A 3-wire product is utilized in applications that have higher
frequency rates than the 2-wire approach or limited protocol require-
ments.

For the purpose of this document we will discuss the 2-wire approach.
I2C protocol is typically the industry leader of communication with 2-
wire EEproms.

The two-wire bus is simple in that only the SDA (serial Data) and SCL
(serial clock) pins are necessary for bus operation while all other pins are
supplementary. The I2C protocol utilizes bi-directional communication
between a master and a slave. I2C protocol is defined so that a device that
sends data onto the bus is a transmitter and the device that receives the
data is a receiver. The bus must be controlled by a master device, which
for the purposes of this document, will be Interface Technology’s digital
stimulus and response subsystem, the SR2500. The master generates the
serial clock (SCL), controls the bus direction, and controls the START
and STOP conditions for bus communication.

App/Tech Note: SR2500-08

Interface Technology

2 Serial EEPROM Test with I2C Bus Emulation

Original

I2C Bus Emulation
Requirements?

Although most I2C bus communication is performed with the use of a
microcontroller as the master, it is possible, and likely more feasible in a
test environment, to use a digital subsystem to emulate the
microcontroller. As stated above, the microcontroller has the ability to
generate the serial clock, control the bus and data flow (bi-directional),
transmit and receive data, and generate START and STOP conditions.
Your digital test subsystem should also have the flexibility to provide
these functions.

The SR2500 has the capability to generate lengthy test data with data
formatting such as NRZ (non-return to zero), RZ (return to zero), RO
(return to one), RTC (return to complement), and RTI (return to inhibit)
on a per pin basis. Along with multiple timing sets, and looping or
branching capability, the SR2500 has the ability to supply continuous
clocks or data for the most complex applications. Bi-directional data flow
requires the ability to tri-state I/O pins and allow for a master to transmit
or receive data. The SR2500 allows per-pin and per vector tri-state
control. The ability to provide precise edge placement delays allows that
SR2500 to generate START and STOP conditions.

All of the above features of the SR2500 make it possible to emulate a
microcontroller to efficiently test an EEprom. Lets look at a simple
example of how this could possibly be implemented.

Let’s first expand upon the basic principles of 2-wire serial operation.
The common device nomenclature is 24xxx or 85xxxx. For the purpose
of this document we well use a X24C16 (2048 x 8 bit) serial EEprom to
test.

As stated above, the EEprom communicates using 2-wire I2C protocol. 2-
wire I2C protocol utilizes master/slave bi-directional communication.
Only the SCL and SDA communication are essential for full Read/Write
operation. The SCL input is used to clock all data into an out of the chip.
SDA is a bi-directional pin that is used to transfer all data into or out of
the chip.

A START condition occurs when SDA transitions from low to high while
SCL is high. A STOP condition occurs when SDA transitions from high
to low while SCL is high. Both conditions need to observe the proper
setup and hold times required by the X24C16 chip. Data is recognized as
valid on SDA while SCL is high.

After a start bit, each cycle begins with an eight bit control byte that is to
be sent by the master (SR2500). The control byte, or slave address,
contains three primary functions, the device identifier, the bank select
bits, and the read/write bit. (See figure 1)

Application

App/Tech Note: SR2500-08 3

OriginalInterface Technology

Serial EEPROM Test with I2C Bus Emulation

�4�� ��! �� � � � �

�,?'1,��9#,
�),%2'@',3

�'A8��3),3
�(3)��))3,&&

Figure 1.

The most significant four bits of the slave address are the device type
identifier, and for the X24C16, this is fixed at 1010[B].

The next three bits of the slave address field are the bank select bits.
Toggling of these bits provide access to the eight 256 x 8 banks of memory
on the X24C16, where these bits are an extension of the array’s address.

The LSB of the control byte is the Read/Write bit, where depending upon
the state of the Read/Write bit the X24C16 will perform a read or write
operation.

Lets take a look at what a typical example of a byte write cycle would look
like.

As stated previously all commands are preceded by a start condition,
where a start condition is a high to low transition while SCL is high. We
will use the SR2500 to generate the clock (SCL) and data bus (SDA). SCL
is a continuous output while SDA is a bi-directional bus (single bit).

Standard SR2500 nomenclature defines a field as a grouping of pins.
Since this is a 2 wire application things are simplified in that both fields
are defined on single pins. The SR2500 front panel has separate inputs
and outputs which can be tied together to form bidirectional channels.
Each output on the SR2500 has 3 memory types and each input has 4
memory types. The output memory types consist of OUTput, TRIstate,
and OT which is a composite of both the output and tristate memories.
OUTput memory types contain RAM backed stimulus patterns that will be
passed to the UUT (slave). The TRIstate memory enables or disables the
drive function of the RAM backed stimulus patterns. The OT field type is
defined so that the end users entered data pattern affects both the OUTput
and TRIstate memories. Since SCL is a continuous clock it will be defined
as an OT field that will continuously drive data. The input memories are
EXPect, DONtcare, REC, and ED which is a composite of the EXPect and
DONtcare memories. The EXPect field type stores the data used in RAM
backed real time comparison. The DONtcare field types are used to mask
(if desired) data that is invalid or irrelavent to the end user. RECord type
fields store data or errors that are returned from the UUT. The ED field
type is defined so that the end users entered data pattern affects both the

App/Tech Note: SR2500-08

Interface Technology

4 Serial EEPROM Test with I2C Bus Emulation

Original

Step 4 Set the R/W bit low to command the slave to perform a write
operation. This completes the setup communication of the slave
address.

Step 5 The SR2500 will tristate its outputs so that the slave can send an
acknowledge signifying that data transfer was successful. Note
the programmed data for the SDA pins at this point is X or
“tristate”.

Step 1 Generate a START condition by transitioning SDA high to low
during a high state of SCL. This is done by the SR2500 by using
NRZ (no delay) formatting for SCL and a Delayed NRZ for SDA
to transition midway through the high width of SCL’s period.

Step 2 After the START condition, communication can begin and must
begin with sending the correct slave address, beginning with the
correct device type identifier for the X24C16. This is a value of
1010[B].

Step 3 Next are the high order address bits that corresponds to the word
address. For this simple example we are using 0000[B].

EXPect and DONtcare memories. Since SDA needs to be bidirectional
(send and receive data) it will be defined on a single pin using ED and
REC field types.). Each pin on the SR2500 has up to 256K of memory
behind it, but this example will need less that 200.

The master needs the ability to control data flow of SDA, and in this case,
it is the ability to tristate the outputs so that the X24C16 slave can take the
bus to generate an acknowledge of successful data transfer. After each
data transfer is complete and each acknowledge is returned, a stop condi-
tion is sent to the slave to terminate all communication. The STOP
condition is a low to high transition of SDA while SCL is high. For
simplicity, I have broken the complete write cycle into 10 steps (see figure
2)

Byte Write Cycle Timing is crucial to provide proper communication between the master
and slave. The SR2500 must provide the ability to transition SDA during
appropriate states of SCL. Since we have defined the SR2500 system
clock to run at 100KHz. Each vector state will be output for 10us. This
ensures a 20us clock period for SCL. Using delayed NRZ (DNRZ)
formatting, the output of SDA is programmed with a delay of 5us ensuring
that SDA’s output is driven to the defined state after its 5us delay time.
The output pin will remain in that state until the same time in the follow-
ing cycle, namely 5us and 15us into SCL’s period (see figure 3).

App/Tech Note: SR2500-08 5

OriginalInterface Technology

Serial EEPROM Test with I2C Bus Emulation

Step 6 For a write operation; the X24C16 requires a second address field.
This address field is the word address, comprised of eight bits,
which provides access to any of the 2048 words in the array. For
this example the address is 10101010[B].

Step 7 The SR2500 will tristate its outputs so that the slave can send an
acknowledge signifying that data transfer was successful.

Step 8 Upon acknowledge the X24C16 awaits the next 8 bits of data.
This is the data to be stored into memory at the particular word
address. For this example the data is 00001111[B].

Step 9 The SR2500 will tristate its outputs so that the slave can send an
acknowledge signifying that data transfer was successful.

Step 10 Generate a STOP condition by transitioning SDA low to high
during a high state of SCL. This terminates all data communica-
tion and begins an internal write cycle to the nonvolatile memory.
Note - The self-timed write cycle typically takes 5ms.

At the completion of the write cycle and a short delay, a read can be done
to return the data written to the specified address. A Random Read of the
X24C16 will be shown. Once the STOP command is issued by the master
the X24C16 will begin its self-timed write cycle, typically 5ms, and all
inputs to the X24C16 are disabled. The master (SR2500) can begin
acknowledge polling immediately, which involves issuing a start condition
followed by the slave address for a write operation. If the X24C16 is still
busy no Acknowledge signal will be returned, but if an acknowledge is
returned the slave is ready for the next read or write cycle to begin.

Note
Acknowledge polling is capable with digital test systems, such as the
SR2500, that have the ability to conditionally loop or branch. As with
most high-speed digital test equipment, waiting for an event to con-
ditionally occur may cause latency issues due to pipeline effects of
that instrument. Those latencies have to be taken into consideration
while developing test program sets. For simplification purposes, this
document will assume that a delay of more than 5ms has been met
before the next write/read cycle has begun. To ensure that the delay
is met, a 5ms delay can be created using CMACRO control of the
SR2500. The SR2500 has per vector command macro control. Since
the SR2500 system clock is running at 10us per vector, a wordloop
on a single vector 600 times, after the write cycle has been com-
pleted, will guarantee that at least 6ms has passed. At the end of
that programmed delay a read cycle can be performed.

A
p

p
/T

ech
 N

o
te: S

R
2500-08

In
terface T

ech
n

o
lo

g
y

6
S

erial E
E

P
R

O
M

 Test w
ith

 I2C
 B

u
s E

m
u

latio
n

O
rig

in
al

�

	���������		

� ! � �

	
�
�
�
�

��� �������������		

	�

	��

��������
��

����������
����������		 �

�

� �� � � � � � � � � � �

�

���

D

���

��

	
�
�
�

E

����������

� �

	�������
�����	�!���

	�

	��

	����������	�!��K	

�3'2,��91+,

Figure 2.

App/Tech Note: SR2500-08 7

OriginalInterface Technology

Serial EEPROM Test with I2C Bus Emulation

Random Read Cycle Random read operations allow the master to access any memory location
in a random manner. Prior to issuing the slave address with the read/write
bit set high, signifying a read operation, a “dummy write” operation must
be performed (see figure 3).

Step 1 Generate a START condition by transitioning SDA high to low
during a high state of SCL. This is done by the SR2500 by using
NRZ (no delay) formatting for SCL and a Delayed NRZ for SDA
to transition midway through the high state of SCL’s period.

Step 2 After the START condition, communication can begin and must
begin with sending the correct slave address. The read/write bit
of the slave address should be low to start the “dummy” write
cycle.

Step 3 The SR2500 will tristate its outputs so that the slave can send an
acknowledge signifying that data transfer was successful. Note
the programmed data for the SDA pins at this point is X or
“tristate”.

Step 4 After the slave address acknowledge, the appropriate word address
should be sent to the X24C16 to read the desired location. For
this document, the appropriate word address is the same as the
address written too in the write cycle above 10101010[B].

Step 5 The SR2500 will again tristate its outputs so that the slave can
send an acknowledge signifying that data transfer was successful.
Note the programmed data for the SDA pins at this point is X or
“tristate”.

Step 6 After the word address acknowledge, the master immediately
reissues the start condition to continue with the read cycle.

Step 7 The slave address will again be placed upon the bus, this time
with the read bit set high to command a read cycle.

Figure 3.

��"��

��%(

���

�+�

��%(�$ �"?

�

A
p

p
/T

ech
 N

o
te: S

R
2500-08

In
terface T

ech
n

o
lo

g
y

8
S

erial E
E

P
R

O
M

 Test w
ith

 I2C
 B

u
s E

m
u

latio
n

O
rig

in
al

	
�
�
�

�

	���������		

��

� !

D

 �

E

�

��

	
�
�
�
�

��� �������������		

	�

	��

� � � � � � �� � � � � � � �

�

� � � � � � � � � � � � � �� � � � � � � � �

� �� � �� � � � � � �� � � � � �

	
�
�
�
�

��� 	���������		
/���������	��0 ��� ���������

	�������
�����	�!���

	�

	��

�$%)(>��,$)��91+,

Figure 4.

App/Tech Note: SR2500-08 9

OriginalInterface Technology

Serial EEPROM Test with I2C Bus Emulation

Conclusion

Step 8 The SR2500 will tristate its outputs so that the slave can send an
acknowledge signifying that data transfer was successful. Note
the programmed data for the SDA pins at this point is X or
“tristate”.

Step 9 After the slave address acknowledge, the master will continue to
tristate its outputs so that the slave can place the byte to be read
onto the bus.

Step 10 The read operation is terminated by the master not responding
with an acknowledge, and issuing a STOP condition. Generate a
STOP condition by transitioning SDA low to high during a high
state of SCL. This terminates all data communication.

 Digital test is ever changing, as much so as technology is asking for
smaller, faster and less expensive products. Flexible digital test equip-
ment can be used in many ways to develop and test these new technolo-
gies. The content of this document describes how one particular aspect of
EEprom testing can simply be achieved, and although it demonstrates a
simple write and read operation, it can be expanded beyond its simple
form to thoroughly test this EEprom and multitudes of its kind. The user
could very well expand upon this to test the entire memory with various
forms of data, as well as include real time comparison and error checking
that would execute an event based upon a non-compared acknowledge
signal or erred read cycle. Bus emulation and memory test require that
the tester can accurately emulate the timing characteristics of that bus, and
control/setup the data flow of that memory to be tested.

App/Tech Note: SR2500-08

Interface Technology

10 Serial EEPROM Test with I2C Bus Emulation

Original

(THIS PAGE INTENTIONALLY LEFT BLANK)

App/Tech Note: SR2500-09 1

OriginalInterface Technology

Using VisTE Software With the SR2500

Using VisTE Software
With the SR2500

SR2500-09

App/Tech Note

When configuring an SR2500 system with 64K of memory use the 5020 I/
O module to represent each group of 32 I/O channels. When using an
SR2500 system with 256K memory, select the 256K Memory Depth
option in VisTE and use the SR5540 I/O module to represent each group
of 32 I/O channels, see Fig 1.

System Setup

Figure 1. System Setup.

App/Tech Note: SR2500-09

Interface Technology

2 Using VisTE Software With the SR2500

Original

Instrument Setup

The frequency range of the SR5000 and SR5500 is 400 Hz to 50 MHz. The frequency range
of the SR2500 is 200 Hz to 25 MHz. If you need to program the SR2500 between 200 Hz
and 400 Hz, the frequency can be changed using the P&P drivers, see Fig 2.

Figure 2. Instrument Setup Screen.

App/Tech Note: SR2500-09 3

OriginalInterface Technology

Using VisTE Software With the SR2500

Fields/Format Timing

The SR5000 and SR5500 allow two stimulus timing delays per 8 channels with 100 ps
resolution. The SR2500 allows two stimulus timing delays per 32 channels with 5-10 ns
resolution, see Fig 3.

Note
The SR2500 will automatically select the closest available timing delay. For example, if
you were to enter the timing parameters for the ‘data’ field shown below in figure 3,
(delay = 15.7 ns, width = 13.81 ns), the SR2500 would select 15 ns for the delay and 15
ns for the width parameters.

Figure 3. Format Timing Screen.

App/Tech Note: SR2500-09

Interface Technology

4 Using VisTE Software With the SR2500

Original

Field/Levels:

In order for proper pinlist match and field definition, the default TTL voltage level must be
selected, see Figs 4 and 5.

Figure 5. Field Definitions.

Figure 4. TTL Voltage Level Selection.

App/Tech Note: SR2500-09 5

OriginalInterface Technology

Using VisTE Software With the SR2500

Differential ECL, and Differential TTL SR2500 considerations using VisTE

Special considerations should also be taken with reference to Differential TTL, and Differen-
tial ECL modules with respect to tri-state control.

A differential ECL card provides 32 channels of differential ECL to/from the UUT. Bi-
directional signals are not supported directly on the board, however, 32 tri-state control
signals are also brought out the Differential ECL board. This gives the user the ability to
control tri-state conditions directly at the UUT or with the use of external pods. Although the
tri-state control is external there is a one to one correlation with the outputs so that program-
ming is performed similar to controlling tri-state conditions with a SR5020 TTL card which
VisTE will allow.

A differential TTL card must be handled somewhat different concerning tri-state control.
Output enables are controlled in groups of 4. So that,

Tri-state bit 0 (Pin 1) enables bits 0-3 (Pins 1-4)

Tri-state bit 4 (Pin 5) enables bits 4-7 (Pins 5-8)

Tri-state bit 8 (Pin 9) enables bits 8-11 (Pins 9-12)

Tri-state bit 12 (Pin 13) enables bits 12-15 (Pins 13-16)

Tri-state bit 16 (Pin 17) enables bits 16-19 (Pins 17-20)

Tri-state bit 20 (Pin 21) enables bits 20-23 (Pins 21-24)

Tri-state bit 24 (Pin 25) enables bits 24-27 (Pins 25-28)

Tri-state bit 28 (Pin 29) enables bits 28-31 (Pins 29-32)

VisTE will automatically generate a tri-state field for each output field that is defined. Field
definitions should take consideration that tri-state controls are defined in such a manner to
adequately control outputs.

For example, single pin field definitions, if possible, should be defined corresponding to tri-
state bit enable boundaries so that when tri-state conditions for those pins are disabled the
outputs are enabled and no manipulation outside of VisTE is needed. If that field is not
defined upon those boundaries the tri-state condition is not addressed so the default tristate
condition will be used, which is to enable the tri-state and disable the outputs. If the pin
associated with the tristate control for a groups of four pins is not included in the field
definition, then there is no mechanism to enable the outputs for any pin in that group. This is
also true considering larger fields that are not defined on 4 bit boundaries. Any tri-state fields
that need to be addressed can also be modified within the Plug and Play driver after a test is
loaded, see Fig 6.

App/Tech Note: SR2500-09

Interface Technology

6 Using VisTE Software With the SR2500

Original

Variable Voltage Considerations using VisTE

When using the SR2500 programmable voltage module a RG25000 rail generator card is
used to provide I/O voltages and thresholds. VisTE does not address the RG2500 card,
although simple SCPI commands can be sent to the instrument to set up the Rail Generator.
Sample SCPI commands to set up all Rail Generator functions are shown below:

*** Setup the rail voltages for output fields ***

SYST:RGEN 1:RAIL A1:HIGH 6.5V;LOW 4.0V

SYST:RGEN 1:RAIL A2:HIGH 5.0V;LOW 2.0V

SYST:RGEN 1:RAIL B1:HIGH 1.5V;LOW –1.5V

SYST:RGEN 1:RAIL B2:HIGH 0.0V;LOW –4.0V

After the levels are setup for the outputs, the input threshold levels can be set.

*** Setup the threshold levels for input fields ***

SYST:RGEN 1:THRES A1:HIGH 5.5V;LOW 5.0V

SYST:RGEN 1:THRES A2:HIGH 4.0V;LOW 3.0V

SYST:RGEN 1:THRES B1:HIGH 0.8V;LOW –0.5V

SYST:RGEN 1:THRES B2:HIGH –1.0V;LOW –3.0V

Figure 6. Field Definitions Screen.

App/Tech Note: SR2500-09 7

OriginalInterface Technology

Using VisTE Software With the SR2500

Once the rail and threshold levels have been set, field definitions can be associated to use the
appropriate levels.

*** Apply Stimulus field definitions to defined rail levels ***

STIM:COND:OFOR:FIEL DC;VOLT A

STIM:COND:OFOR:FIEL OUTPUT;VOLT B

STIM:COND:OFOR:FIEL BIDIRECT;VOLT A

*** Apply Response field definitions to defined threshold levels ***

REC:COND:SAMP:FIEL DC_EXPCT;THRES A

REC:COND:SAMP:FIEL INPUT;THRES B

REC:COND:SAMP:FIEL RECORD;THRES A

The rail generator supplies 16 independently programmable output voltages to the SR25000
variable voltage module(s). The voltages are supplied via two output connectors (output 1
and output 2) located on the front panel of the Rail Generator; each connector supplies four
rail voltages and four threshold voltages. Commands are also needed to connect or discon-
nect the output voltages on the RG2500 connectors.

*** Connect the output voltages for rail generator 1 ***

SYSTEM:RGEN 1:CONN 1

*** Disconnect the output voltages for rail generator 1 ***

SYSTEM:RGEN 1:DISC 1

App/Tech Note: SR2500-09

Interface Technology

8 Using VisTE Software With the SR2500

Original

(THIS PAGE INTENTIONALLY LEFT BLANK)

App/Tech Note: SR2500-10 1

OriginalInterface Technology

SRAM Soft Error Test System

SRAM Soft Error Test System

Introduction

Purpose & Objective

SR2500-10

App/Tech Note

Figure 1. Photo of the Soft Error Test System.

The transition to smaller and smaller micron processor technologies have
increased the frequency of soft error rates (SERs) in SRAM devices. Soft
error is a natural phenomenon that is caused when a burst of energy,
caused by the collision of two atoms, follows a certain path where the
semiconductor is trying to measure what is being stored in that cell. Thus,
the energy can cause the circuitry to read or write the wrong information.

A method of detecting whether wrong information is corrupting the
SRAM device is being utilized by a large semiconductor manufacturer
through the use of Interface Technology’s SR2500 Digital Test Sub-
systems in a Soft Error Tester.

Below describes the configuration of the system and how the Soft Error
System is used to detect these rapidly increasing failure rates.

The purpose of the test system described herein is to test memory chips
for “soft errors” that occur within the memory chips as a result of external
radiation such as low-energy alpha particles, high-energy cosmic particles
and thermal neutrons present in the environment. Testing is accomplished
by writing a known digital pattern to the chips under test (e.g., a “checker-
board” 101010101010 pattern) supplied by the SR2510, and then
reading the stored pattern back and comparing it, bit-by-bit, with the
original written pattern. Soft errors are denoted wherever the bit patterns
do not exactly match. The location of the error within the chip is identi-
fied and the bit errors tallied and read out as a Soft Error Rate (SER) on a
PC screen.

App/Tech Note: SR2500-10

Interface Technology

2 SRAM Soft Error Test System

Original

See Fig 3. The SRAM Soft Error Test System can test up to eight memory
boards at one time, each containing two MUT’s (Memory UnderTest).
Each MUT, in turn, contains two types of memory chips ...

o Type 1 — 64K words by 36-bits
o Type 2 — 4K words by 36-bits and 2 blanks.

Write To Memory.

All 18-bit memories are written simultaneously for both Type 1 and Type2
chips. The same data is loaded into both the lower and higher 18-bit
registers for both chips, on the same board, at the same time.

Read From Memory.

Type 1: (64K words by 36-bits) First the lower 18-bit register is read, then
the higher 18-bit register is read.

Type 2: (4K words by 36-bits and 2 blanks) The first 18-bit register is
read, then the second, third, and fourth 18-bit registers are read.

The read sequence then moves to the next chip.

Because the SR2500 modules integrate channel density with high speed
data rates, multiple types of memory boards can be tested at once. This
application includes a mixture of different types of boards; for example
Type 1 and Type 2 as mentioned above. The test command sequencing
(CMACRO’s) handle which type of board is being tested and can be easily
modified to account for different combinations. The SR2500 looping and
branching capabilities allow for this type of operation. Take for example a
test system that would allow a maximum of 4 cards to be tested at once.
Combinations possible could be (4) Type 1 cards only, (3) Type 1 cards
and (1) Type 2 card, (2) type 1 cards and (2) type 2 cards,etc…. The test
script can be written to address the maximum amount ofcards allowable.
This type of typical application would usually require the manufacturer to
load a test script based upon each new configuration.The overhead in time
to load each specific test and its corresponding data, based upon various
combinations, takes time and could affect productionor test time. For this
application the manufacturer was able to write the test script to include all
test scenarios and just modify the correspondingsequence commands
(CMACRO’s) to “JUMP” or skip commands that are not necessary for the
particular combination. The time it takes to modify a few commands, (add
or remove Jump commands) , is far less time to reload an entire test
scenario. Refer to SR2500 User’s Manual for a description of the
CMACRO commands.

Test Setup

Write-Read Sequence

SR2510
Is Sequence Controller.

App/Tech Note: SR2500-10 3

OriginalInterface Technology

SRAM Soft Error Test System

Figure 2. Test Block Diagram.

Figure 3. Test Setup Diagram.

PC
SR2510

2500-002

Power
Supply

Power
Supply

MUT
Boards

+1.5 Vdc

Gnd

+3.3 Vdc

Gnd

Flat Cable (3m)GP-IB Cable (10m)

1 2 3 4

ON

Board Address Switch

MUT 1
Socket

MUT 2
Socket

MUT Boards

Power Supply Connector

SR2510 Address Connector

Data Out Connector to SR2510

Write Data Connector From SR2510

1,2,3 ON: Board 0
1,2,4 OFF: Board 1

MUT Board
For Chip D

App/Tech Note: SR2500-10

Interface Technology

4 SRAM Soft Error Test System

Original

The actual SR2510 program used to generate the test signal patterns in this
test application begins page 5 of the test program. In addition to the
checker board pattern, three additional test patterns can be generated with
this program ... a reverse checker board pattern, an all “1’s” pattern, and an
all “0’s” program. Both the checker board and the reverse checker board
patterns are generated with the same CMACRO instruction. The only
difference is the pattern. The all “1’s” and all “0’s” patterns are generated
using the HOLDD AMACRO (see top of page 17 of test program).

The data and address patterns are created using algorithmic type field
definitions. By defining the fields as algorithmic type fields the manufac-
turer was able to perform algorithmic functions such as INCREMENT the
address, and perform an XOR (exclusive OR) function on the data patterns
to load, read, or compare the desired data or address. Algorithmic com-
mands (AMACRO’s) allow real-time generation of stimulus and expected
responses based upon simple functions. By using the CMACRO looping
commands, the SR2510 allows lengthy patterns to be generated with very
few actual vectors and at full system speed.. This along with the fact that
test load speed is faster due to less command structure makes algorithmic
pattern generation ideal for Soft Error Memory Test. Refer to SR2500
User’s Manual for a description of the AMACRO commands.

SR2510 Program

Figure 4. Test Setup Using SR2510.

Test Head

Memory Load Board

M
em

o
ry

 E
xe

rc
is

er

VXI VXI

R
ef

re
sh

 T
im

in
g

 G
en

er
at

o
r

M
X

I I
n

te
rf

ac
e

POWER
SYSFAIL
ACCESS

RUN
ARMED

BUS MST
ERROR

OVR TMP

10 MHz REF IN

CLOCK IN

TRIGGER IN

GATE IN

CLOCK OUT

INPUT FLAGS

GND
GND
GND
GND
GND
GND
GND
GND

BIT
7
6
5
4
3
2
1
0

AUX
PWR

VXI

REMOVE RIGHT
MOST SR2500
MODULES FIRST

SR2510
Main

Module

App/Tech Note: SR2500-10 5

OriginalInterface Technology

SRAM Soft Error Test System

;****SR 2500 PROG 1 REPEAT TEST DATA PATTERN : Checker Board****
;*****CB Normal TEST ******
TEST:DEF CBNRM:SIZE 65500
SYST:TEST CBNRM
SYST:FREQ 5000000
FIEL:DEF ADDRO:TYPE ALGO:PIN C1P24-1
FIELD:NAME ADDRO:RAD HEX
FIEL:DEF ADDRE:TYPE ALGE:PIN C1P24-1
FIELD:NAME ADDRE:RAD HEX
FIEL:DEF ADDROT:TYPE OT:PIN C1P16-1
FIELD:NAME ADDROT:RAD HEX
FIEL:DEF ADDRED:TYPE ED:PIN C1P16-1
FIELD:NAME ADDRED:RAD HEX

FIEL:DEF ADDRR:TYPE RECORD:PIN C1P16-1
FIELD:NAME ADDRR:RAD HEX
FIEL:DEF OSELOT:TYPE OT:PIN C1P17
FIELD:NAME OSELOT:RAD BIN
FIEL:DEF OSELED:TYPE ED:PIN C1P17
FIELD:NAME OSELED:RAD BIN
FIEL:DEF OSELR:TYPE RECORD:PIN C1P17
FIELD:NAME OSELR:RAD BIN

FIEL:DEF MACROOT:TYPE OT:PIN C1P21-18
FIELD:NAME MACROOT:RAD HEX
FIEL:DEF MACROED:TYPE ED:PIN C1P21-18
FIELD:NAME MACROED:RAD HEX
FIEL:DEF MACROR:TYPE RECORD:PIN C1P21-18
FIELD:NAME MACROR:RAD HEX

FIEL:DEF CSELOT:TYPE OT:PIN C1P26-25
FIELD:NAME CSELOT:RAD BIN
FIEL:DEF CSELED:TYPE ED:PIN C1P26-25
FIELD:NAME CSELED:RAD BIN
FIEL:DEF CSELR:TYPE RECORD:PIN C1P26-25
FIELD:NAME CSELR:RAD BIN

FIEL:DEF BDSELOT:TYPE OT:PIN C1P29-27
FIELD:NAME BDSELOT:RAD HEX
FIEL:DEF BDSELED:TYPE ED:PIN C1P29-27
FIELD:NAME BDSELED:RAD HEX
FIEL:DEF BDSELR:TYPE RECORD:PIN C1P29-27
FIELD:NAME BDSELR:RAD HEX

FIEL:DEF RAMCLKOT:TYPE OT:PIN C1P30

Note:

For your convenience, this entire test program
can be downloaded, in MS-Word format, from
the web site at:

http://www.interfacetech.com/appnotes.html.

App/Tech Note: SR2500-10

Interface Technology

6 SRAM Soft Error Test System

Original

FIELD:NAME RAMCLKOT:RAD BIN
FIEL:DEF RAMCLKED:TYPE ED:PIN C1P30
FIELD:NAME RAMCLKED:RAD BIN.
FIEL:DEF RAMCLKR:TYPE RECORD:PIN C1P30
FIELD:NAME RAMCLKR:RAD BIN

FIEL:DEF FFCLKOT:TYPE OT:PIN C2P30
FIELD:NAME FFCLKOT:RAD BIN
FIEL:DEF FFCLKED:TYPE ED:PIN C2P30
FIELD:NAME FFCLKED:RAD BIN
FIEL:DEF FFCLKR:TYPE RECORD:PIN C2P30
FIELD:NAME FFCLKR:RAD BIN

FIEL:DEF WEBOT:TYPE OT:PIN C1P31
FIELD:NAME WEBOT:RAD BIN
FIEL:DEF WEBED:TYPE ED:PIN C1P31
FIELD:NAME WEBED:RAD BIN
FIEL:DEF WEBR:TYPE RECORD:PIN C1P31
FIELD:NAME WEBR:RAD BIN

FIEL:DEF DATAO:TYPE ALGO:PIN C2P24-1
FIELD:NAME DATAO:RAD HEX
FIEL:DEF DATAOT:TYPE OT:PIN C2P24-1
FIELD:NAME DATAOT:RAD HEX
FIEL:DEF DATAE:TYPE ALGE:PIN C2P24-1
FIELD:NAME DATAE:RAD HEX

FIEL:DEF DATAED:TYPE ED:PIN C2P24-1
FIELD:NAME DATAED:RAD HEX
FIEL:DEF DATAD:TYPE DON:PIN C2P24-1
FIELD:NAME DATAD:RAD HEX
FIEL:DEF DATAR:TYPE RECORD:PIN C2P24-1
FIELD:NAME DATAR:RAD HEX

FIEL:DEF SYNCOT:TYPE OT:PIN C1P32
FIELD:NAME SYNCOT:RAD BIN
FIEL:DEF SYNCED:TYPE ED:PIN C1P32
FIELD:NAME SYNCED:RAD BIN
FIEL:DEF SYNCR:TYPE RECORD:PIN C1P32
FIELD:NAME SYNCR:RAD BIN

;Set timings.
STIM:COND:OFOR:FIEL DATAOT;MODE NRZ,0.000000E-8
STIM:COND:OFOR:FIEL ADDROT;MODE NRZ,0.000000E-8
STIM:COND:OFOR:FIEL RAMCLKOT;MODE RZ,2.500000E-8,6.500000E-8

App/Tech Note: SR2500-10 7

OriginalInterface Technology

SRAM Soft Error Test System

STIM:COND:OFOR:FIEL FFCLKOT;MODE RZ,5.000000E-8,4.000000E-8
REC:COND:SAMP:FIEL SYNCED;MODE EDGE,0.950000E-7
REC:COND:SAMP:FIEL DATAED;MODE EDGE,1.500000E-7
REC:COND:SAMP:FIEL ADDRED;MODE EDGE,0.950000E-7
REC:COND:SAMP:FIEL OSELED;MODE EDGE,0.950000E-7
REC:COND:SAMP:FIEL MACROED;MODE EDGE,0.950000E-7
REC:COND:SAMP:FIEL CSELED;MODE EDGE,0.950000E-7.
REC:COND:SAMP:FIEL BDSELED;MODE EDGE,0.950000E-7
REC:COND:SAMP:FIEL RAMCLKED;MODE EDGE,0.500000E-7
REC:COND:SAMP:FIEL FFCLKED;MODE EDGE,0.400000E-7
REC:COND:SAMP:FIEL WEBED;MODE EDGE,0.950000E-7
;CMACRO program commands.
STIM:VEC 1;COUN 1;CMACRO:DEF (SP(OUT))
STIM:VEC 2;COUN 1;CMACRO:DEF (WL(OUT(COUN==10)))
STIM:VEC 3;COUN 1;CMACRO:DEF (CLEARE(OUT))
STIM:VEC 4;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 5;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 6;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 7;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 8;COUN 1;CMACRO:DEF (SL(OUT(COUN==1024)))
STIM:VEC 9;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 10;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 11;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 12;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 13;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 14;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 15;COUN 1;CMACRO:DEF (SL(OUT(COUN==1024)))
STIM:VEC 16;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 17;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 18;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 19;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 20;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 21;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 22;COUN 1;CMACRO:DEF (SL(OUT(COUN==1024)))
STIM:VEC 23;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 24;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 25;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 26;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 27;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 28;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 29;COUN 1;CMACRO:DEF (SL(OUT(COUN==1024)))
STIM:VEC 30;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 31;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 32;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 33;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))

App/Tech Note: SR2500-10

Interface Technology

8 SRAM Soft Error Test System

Original

STIM:VEC 34;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 35;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 36;COUN 1;CMACRO:DEF (SL(OUT(COUN==1024)))
STIM:VEC 37;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 38;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 39;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 40;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 41;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 42;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 43;COUN 1;CMACRO:DEF (SL(OUT(COUN==1024)))
STIM:VEC 44;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 45;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 46;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 47;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 48;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 49;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 50;COUN 1;CMACRO:DEF (SL(OUT(COUN==1024)))
STIM:VEC 51;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 52;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 53;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 54;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 55;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 56;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 57;COUN 1;CMACRO:DEF (SL(OUT(COUN==1024)))
STIM:VEC 58;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 59;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 60;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 61;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 62;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 63;COUN 1;CMACRO:DEF ((LAB WC0)OUT(OUT))
STIM:VEC 64;COUN 1;CMACRO:DEF (SL(OUT(COUN==128)))
STIM:VEC 65;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 66;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 67;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 68;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 69;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 70;COUN 1;CMACRO:DEF ((LAB WC1)OUT(OUT))
STIM:VEC 71;COUN 1;CMACRO:DEF (SL(OUT(COUN==128)))
STIM:VEC 72;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 73;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 74;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 75;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 76;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 77;COUN 1;CMACRO:DEF ((LAB WC2)OUT(OUT))
STIM:VEC 78;COUN 1;CMACRO:DEF (SL(OUT(COUN==128)))

App/Tech Note: SR2500-10 9

OriginalInterface Technology

SRAM Soft Error Test System

STIM:VEC 79;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 80;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 81;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 82;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 83;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 84;COUN 1;CMACRO:DEF ((LAB WC3)OUT(OUT))
STIM:VEC 85;COUN 1;CMACRO:DEF (SL(OUT(COUN==128)))
STIM:VEC 86;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 87;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 88;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 89;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 90;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 91;COUN 1;CMACRO:DEF ((LAB WC4)OUT(OUT))
STIM:VEC 92;COUN 1;CMACRO:DEF (SL(OUT(COUN==128)))
STIM:VEC 93;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 94;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 95;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 96;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 97;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 98;COUN 1;CMACRO:DEF ((LAB WC5)OUT(OUT))
STIM:VEC 99;COUN 1;CMACRO:DEF (SL(OUT(COUN==128)))
STIM:VEC 100;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 101;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 102;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 103;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 104;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 105;COUN 1;CMACRO:DEF ((LAB WC6)OUT(OUT))
STIM:VEC 106;COUN 1;CMACRO:DEF (SL(OUT(COUN==128)))
STIM:VEC 107;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 108;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 109;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 110;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 111;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 112;COUN 1;CMACRO:DEF ((LAB WC7)OUT(OUT))
STIM:VEC 113;COUN 1;CMACRO:DEF (SL(OUT(COUN==128)))
STIM:VEC 114;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 115;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 116;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 117;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 118;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 119;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 120;COUN 1;CMACRO:DEF ((LAB WEND)WL(NOP(CONTinue==TRUE)))
STIM:VEC 121;COUN 1;CMACRO:DEF ((LAB RA0)OUT(OUT))
STIM:VEC 122;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 123;COUN 1;CMACRO:DEF (OUT(OUT))

App/Tech Note: SR2500-10

Interface Technology

10 SRAM Soft Error Test System

Original

STIM:VEC 124;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 125;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 126;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 127;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 128;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 129;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 130;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 131;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 132;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 133;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 134;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 135;COUN 1;CMACRO:DEF ((LAB RA1)OUT(OUT))
STIM:VEC 136;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 137;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 138;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 139;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 140;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 141;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 142;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 143;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 144;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 145;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 146;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 147;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 148;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 149;COUN 1;CMACRO:DEF ((LAB RA2)OUT(OUT))
STIM:VEC 150;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 151;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 152;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 153;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 154;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 155;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 156;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 157;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 158;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 159;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 160;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 161;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 162;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 163;COUN 1;CMACRO:DEF ((LAB RA3)OUT(OUT))
STIM:VEC 164;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 165;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 166;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 167;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 168;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))

App/Tech Note: SR2500-10 11

OriginalInterface Technology

SRAM Soft Error Test System

STIM:VEC 169;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 170;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 171;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 172;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 173;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 174;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 175;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 176;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 177;COUN 1;CMACRO:DEF ((LAB RA4)OUT(OUT))
STIM:VEC 178;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 179;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 180;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 181;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 182;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 183;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 184;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 185;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 186;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 187;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 188;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 189;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 190;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 191;COUN 1;CMACRO:DEF ((LAB RA5)OUT(OUT))
STIM:VEC 192;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 193;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 194;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 195;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 196;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 197;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 198;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 199;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 200;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 201;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 202;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 203;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 204;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 205;COUN 1;CMACRO:DEF ((LAB RA6)OUT(OUT))
STIM:VEC 206;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 207;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 208;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 209;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 210;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 211;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 212;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 213;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))

App/Tech Note: SR2500-10

Interface Technology

12 SRAM Soft Error Test System

Original

STIM:VEC 214;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 215;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 216;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 217;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 218;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 219;COUN 1;CMACRO:DEF ((LAB RA7)OUT(OUT))
STIM:VEC 220;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 221;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 222;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 223;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 224;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 225;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 226;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 227;COUN 1;CMACRO:DEF (SL(OUT(COUN==2048)))
STIM:VEC 228;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 229;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 230;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 231;COUN 1;CMACRO:DEF (WL(OUT(COUN==32)))
STIM:VEC 232;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 233;COUN 1;CMACRO:DEF ((LAB RC0)OUT(OUT))
STIM:VEC 234;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 235;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 236;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 237;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 238;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 239;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 240;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 241;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 242;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 243;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 244;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 245;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 246;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 247;COUN 1;CMACRO:DEF ((LAB RC1)OUT(OUT))
STIM:VEC 248;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 249;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 250;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 251;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 252;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 253;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 254;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 255;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 256;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 257;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 258;COUN 1;CMACRO:DEF (OUT(OUT))

App/Tech Note: SR2500-10 13

OriginalInterface Technology

SRAM Soft Error Test System

STIM:VEC 259;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 260;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 261;COUN 1;CMACRO:DEF ((LAB RC2)OUT(OUT))
STIM:VEC 262;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 263;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 264;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 265;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 266;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 267;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 268;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 269;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 270;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 271;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 272;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 273;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 274;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 275;COUN 1;CMACRO:DEF ((LAB RC3)OUT(OUT))
STIM:VEC 276;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 277;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 278;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 279;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 280;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 281;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 282;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 283;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 284;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 285;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 286;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 287;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 288;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 289;COUN 1;CMACRO:DEF ((LAB RC4)OUT(OUT))
STIM:VEC 290;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 291;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 292;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 293;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 294;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 295;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 296;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 297;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 298;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 299;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 300;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 301;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 302;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 303;COUN 1;CMACRO:DEF ((LAB RC5)OUT(OUT))

App/Tech Note: SR2500-10

Interface Technology

14 SRAM Soft Error Test System

Original

STIM:VEC 304;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 305;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 306;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 307;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 308;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 309;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 310;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 311;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 312;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 313;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 314;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 315;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 316;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 317;COUN 1;CMACRO:DEF ((LAB RC6)OUT(OUT))
STIM:VEC 318;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 319;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 320;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 321;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 322;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 323;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 324;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 325;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 326;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 327;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 328;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 329;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 330;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 331;COUN 1;CMACRO:DEF ((LAB RC7)OUT(OUT))
STIM:VEC 332;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 333;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 334;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 335;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 336;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 337;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 338;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 339;COUN 1;CMACRO:DEF (SL(OUT(COUN==512)))
STIM:VEC 340;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 341;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 342;COUN 1;CMACRO:DEF (OUT(OUT))
STIM:VEC 343;COUN 1;CMACRO:DEF (WL(OUT(COUN==16)))
STIM:VEC 344;COUN 1;CMACRO:DEF (EL(OUT))
STIM:VEC 345;COUN 1;CMACRO:DEF ((LAB END)EP(NOP))

;Define address pattern
STIM:VEC 8;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA, INC,

App/Tech Note: SR2500-10 15

OriginalInterface Technology

SRAM Soft Error Test System

HOLDA
STIM:VEC 15;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 22;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 29;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 36;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 43;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 50;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 57;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 63;COUN 1;AMAC:FIEL ADDRO;PATT NONA
STIM:VEC 64;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 71;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 78;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 85;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 92;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 99;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 106;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 113;COUN 6;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
STIM:VEC 120;COUN 1;AMAC:FIEL ADDRO;PATT HOLDD
STIM:VEC 122;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 136;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 150;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 164;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 178;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 192;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA

App/Tech Note: SR2500-10

Interface Technology

16 SRAM Soft Error Test System

Original

STIM:VEC 206;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 220;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 234;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 248;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 262;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 276;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 290;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 304;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 318;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 332;COUN 13;AMAC:FIEL ADDRO;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
STIM:VEC 345;COUN 1;AMAC:FIEL ADDRO;PATT HOLDD

;Define data pattern
STIM:VEC 8;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 15;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 22;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 29;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 36;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 43;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 50;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 57;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 64;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 71;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 78;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD

App/Tech Note: SR2500-10 17

OriginalInterface Technology

SRAM Soft Error Test System

STIM:VEC 85;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 92;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 99;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 106;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 113;COUN 6;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
STIM:VEC 120;COUN 1;AMAC:FIEL DATAO;PATT HOLDD
STIM:VEC 122;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 136;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 150;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 164;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 178;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 192;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 206;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 220;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 234;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 248;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 262;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 276;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 290;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 304;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 318;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 332;COUN 13;AMAC:FIEL DATAO;PATT HOLDD, NONA, XOR, NONA,
XOR, HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
STIM:VEC 345;COUN 1;AMAC:FIEL DATAO;PATT HOLDD

App/Tech Note: SR2500-10

Interface Technology

18 SRAM Soft Error Test System

Original

;Define address data source (counter initial value)
STIM:VEC 1;COUN 8;DATA:FIEL ADDROT;PATT
#Hxxxx,#hxxxx,#hxxxx,#hxxxx,#hxxxx,#hxxxx,#hxxxx,#hxxxx
STIM:VEC 7;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 10;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 12;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 14;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 17;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 19;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 21;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 24;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 26;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 28;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 31;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 33;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 35;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 38;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 40;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 42;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 45;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 47;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 49;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 52;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 54;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 56;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 59;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 61;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 63;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 66;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 68;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 70;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 73;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 75;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 77;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 80;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 82;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 84;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 87;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 89;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 91;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 94;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 96;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 98;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 101;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 103;COUN 1;DATA:FIEL ADDROT;PATT #H0000

App/Tech Note: SR2500-10 19

OriginalInterface Technology

SRAM Soft Error Test System

STIM:VEC 105;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 108;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 110;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 112;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 115;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 117;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 119;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 121;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 124;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 126;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 128;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 131;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 133;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 135;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 138;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 140;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 142;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 145;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 147;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 149;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 152;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 154;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 156;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 159;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 161;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 163;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 166;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 168;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 170;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 173;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 175;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 177;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 180;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 182;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 184;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 187;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 189;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 191;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 194;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 196;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 198;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 201;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 203;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 205;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 208;COUN 1;DATA:FIEL ADDROT;PATT #H0000

App/Tech Note: SR2500-10

Interface Technology

20 SRAM Soft Error Test System

Original

STIM:VEC 210;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 212;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 215;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 217;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 219;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 222;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 224;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 226;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 229;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 231;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 233;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 236;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 238;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 240;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 243;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 245;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 247;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 250;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 252;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 254;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 257;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 259;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 261;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 264;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 266;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 268;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 271;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 273;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 275;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 278;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 280;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 282;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 285;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 287;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 289;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 292;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 294;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 296;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 299;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 301;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 303;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 306;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 308;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 310;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 313;COUN 1;DATA:FIEL ADDROT;PATT #H0000

App/Tech Note: SR2500-10 21

OriginalInterface Technology

SRAM Soft Error Test System

STIM:VEC 315;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 317;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 320;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 322;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 324;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 327;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 329;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 331;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 334;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 336;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 338;COUN 1;DATA:FIEL ADDROT;PATT #HFFFF
STIM:VEC 341;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 343;COUN 1;DATA:FIEL ADDROT;PATT #H0000
STIM:VEC 345;COUN 1;DATA:FIEL ADDROT;PATT #H0000

;Define data source (counter initial value)
STIM:VEC 1;COUN 7;DATA:FIEL DATAOT;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFFFFFF,#hFFFFFF,#hFFFFFF,#hFFFFFF
STIM:VEC 9;COUN 5;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF,#h000000
STIM:VEC 14;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 16;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 21;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 23;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 28;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 30;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 35;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 37;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 42;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 44;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 49;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 51;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 56;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 58;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 63;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 65;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 70;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF

App/Tech Note: SR2500-10

Interface Technology

22 SRAM Soft Error Test System

Original

STIM:VEC 72;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 77;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 79;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 84;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 86;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 91;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 93;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 98;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 100;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 105;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF;
STIM:VEC 107;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 112;COUN 1;DATA:FIEL DATAOT;PATT #HFFFFFF
STIM:VEC 114;COUN 4;DATA:FIEL DATAOT;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
STIM:VEC 121;COUN 1;DATA:FIEL DATAOT;PATT #H000000
STIM:VEC 123;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 130;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 137;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 144;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 151;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 158;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 165;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 172;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 179;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 186;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 193;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 200;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000

App/Tech Note: SR2500-10 23

OriginalInterface Technology

SRAM Soft Error Test System

STIM:VEC 207;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 214;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 221;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 228;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 235;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 242;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 249;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 256;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 263;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 270;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 277;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 284;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 291;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 298;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 305;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 312;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 319;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 326;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 333;COUN 4;DATA:FIEL DATAOT;PATT
#H000000,#H000000,#H000000,#H000000
STIM:VEC 340;COUN 4;DATA:FIEL DATAOT;PATT

#H000000,#H000000,#H000000,#H000000
STIM:VEC 1;COUN 120;DATA:FIEL OSELOT;FILL:TYPE REP;INT 1;PATT
#B1;EXEC
STIM:VEC 121;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 124;COUN 1;DATA:FIEL OSELOT;PATT #B0

App/Tech Note: SR2500-10

Interface Technology

24 SRAM Soft Error Test System

Original

STIM:VEC 126;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 128;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 131;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 133;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 135;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 138;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 140;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 142;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 145;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 147;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 149;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 152;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 154;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 156;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 159;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 161;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 163;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 166;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 168;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 170;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 173;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 175;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 177;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 180;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 182;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 184;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 187;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 189;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 191;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 194;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 196;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 198;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 201;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 203;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 205;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 208;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 210;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 212;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 215;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 217;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 219;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 222;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 224;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 226;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 229;COUN 1;DATA:FIEL OSELOT;PATT #B0

App/Tech Note: SR2500-10 25

OriginalInterface Technology

SRAM Soft Error Test System

STIM:VEC 231;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 233;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 236;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 238;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 240;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 243;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 245;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 247;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 250;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 252;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 254;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 257;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 259;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 261;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 264;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 266;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 268;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 271;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 273;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 275;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 278;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 280;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 282;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 285;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 287;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 289;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 292;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 294;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 296;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 299;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 301;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 303;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 306;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 308;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 310;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 313;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 315;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 317;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 320;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 322;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 324;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 327;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 329;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 331;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 334;COUN 1;DATA:FIEL OSELOT;PATT #B0

App/Tech Note: SR2500-10

Interface Technology

26 SRAM Soft Error Test System

Original

STIM:VEC 336;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 338;COUN 1;DATA:FIEL OSELOT;PATT #B1
STIM:VEC 341;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 343;COUN 1;DATA:FIEL OSELOT;PATT #B0
STIM:VEC 345;COUN 1;DATA:FIEL OSELOT;PATT #B0

STIM:VEC 7;COUN 7;DATA:FIEL MACROOT;PATT #hF,#h0,#h0,#h0,#h0,#h0,#h0

REC:VEC 7;COUN 7;DATA:FIEL MACROED;PATT #hF,#h0,#h0,#h0,#h0,#h0,#h0

STIM:VEC 1;COUN 7;DATA:FIEL CSELOT;FILL:TYPE REP;INT 1;PATT #B11;EXEC
STIM:VEC 8;COUN 112;DATA:FIEL CSELOT;FILL:TYPE REP;INT 1;PATT
#B00;EXEC
STIM:VEC 120;COUN 1;DATA:FIEL CSELOT;PATT #B11
STIM:VEC 121;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 135;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 149;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 163;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 177;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 191;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 205;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 219;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 233;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 247;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 261;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 275;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 289;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 303;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 317;COUN 14;DATA:FIEL CSELOT;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 331;COUN 14;DATA:FIEL CSELOT;PATT

App/Tech Note: SR2500-10 27

OriginalInterface Technology

SRAM Soft Error Test System

#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
STIM:VEC 345;COUN 1;DATA:FIEL CSELOT;PATT #Bxx

;Define Board number
STIM:VEC 1;COUN 13;DATA:FIEL BDSELOT;FILL:TYPE REP;INT 1;PATT
#H0;EXEC
STIM:VEC 14;COUN 7;DATA:FIEL BDSELOT;PATT #H1,#H1,#H1,#H1,
#H1,#H1,#H1
STIM:VEC 21;COUN 7;DATA:FIEL BDSELOT;PATT #H2,#H2,#H2,#H2,
#H2,#H2,#H2
STIM:VEC 28;COUN 7;DATA:FIEL BDSELOT;PATT #H3,#H3,#H3,#H3,
#H3,#H3,#H3
STIM:VEC 35;COUN 7;DATA:FIEL BDSELOT;PATT #H4,#H4,#H4,#H4,
#H4,#H4,#H4
STIM:VEC 42;COUN 7;DATA:FIEL BDSELOT;PATT #H5,#H5,#H5,#H5,
#H5,#H5,#H5
STIM:VEC 49;COUN 7;DATA:FIEL BDSELOT;PATT #H6,#H6,#H6,#H6,
#H6,#H6,#H6
STIM:VEC 56;COUN 7;DATA:FIEL BDSELOT;PATT #H7,#H7,#H7,#H7,
#H7,#H7,#H7
STIM:VEC 63;COUN 7;DATA:FIEL BDSELOT;PATT #H0,#H0,#H0,#H0,
#H0,#H0,#H0
STIM:VEC 70;COUN 7;DATA:FIEL BDSELOT;PATT #H1,#H1,#H1,#H1,
#H1,#H1,#H1
STIM:VEC 77;COUN 7;DATA:FIEL BDSELOT;PATT #H2,#H2,#H2,#H2,
#H2,#H2,#H2
STIM:VEC 84;COUN 7;DATA:FIEL BDSELOT;PATT #H3,#H3,#H3,#H3,
#H3,#H3,#H3
STIM:VEC 91;COUN 7;DATA:FIEL BDSELOT;PATT #H4,#H4,#H4,#H4,
#H4,#H4,#H4
STIM:VEC 98;COUN 7;DATA:FIEL BDSELOT;PATT #H5,#H5,#H5,#H5,
#H5,#H5,#H5
STIM:VEC 105;COUN 7;DATA:FIEL BDSELOT;PATT #H6,#H6,#H6,#H6,
#H6,#H6,#H6
STIM:VEC 112;COUN 7;DATA:FIEL BDSELOT;PATT #H7,#H7,#H7,#H7,
#H7,#H7,#H7
STIM:VEC 119;COUN 2;DATA:FIEL BDSELOT;PATT #H0,#H0
STIM:VEC 121;COUN 14;DATA:FIEL BDSELOT;PATT #H0,#H0,#H0,#H0,
#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0
STIM:VEC 135;COUN 14;DATA:FIEL BDSELOT;PATT #H1,#H1,#H1,#H1,
#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1
STIM:VEC 149;COUN 14;DATA:FIEL BDSELOT;PATT #H2,#H2,#H2,#H2,
#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2
STIM:VEC 163;COUN 14;DATA:FIEL BDSELOT;PATT #H3,#H3,#H3,#H3,
#H3,#H3,#H3,#H3,#H3,#H3,#H3,#H3,#H3,#H3

App/Tech Note: SR2500-10

Interface Technology

28 SRAM Soft Error Test System

Original

STIM:VEC 177;COUN 14;DATA:FIEL BDSELOT;PATT #H4,#H4,#H4,#H4,
#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4
STIM:VEC 191;COUN 14;DATA:FIEL BDSELOT;PATT #H5,#H5,#H5,#H5,
#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5
STIM:VEC 205;COUN 14;DATA:FIEL BDSELOT;PATT #H6,#H6,#H6,#H6,
#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6
STIM:VEC 219;COUN 14;DATA:FIEL BDSELOT;PATT #H7,#H7,#H7,#H7,
#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7
STIM:VEC 233;COUN 14;DATA:FIEL BDSELOT;PATT #H0,#H0,#H0,#H0,
#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0
STIM:VEC 247;COUN 14;DATA:FIEL BDSELOT;PATT #H1,#H1,#H1,#H1,
#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1
STIM:VEC 261;COUN 14;DATA:FIEL BDSELOT;PATT #H2,#H2,#H2,#H2,
#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2
STIM:VEC 275;COUN 14;DATA:FIEL BDSELOT;PATT #H3,#H3,#H3,#H3,
#H3,#H3,#H3, #H3,#H3,#H3,#H3,#H3,#H3,#H3
STIM:VEC 289;COUN 14;DATA:FIEL BDSELOT;PATT #H4,#H4,#H4,#H4,
#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4
STIM:VEC 303;COUN 14;DATA:FIEL BDSELOT;PATT #H5,#H5,#H5,#H5,
#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5
STIM:VEC 317;COUN 14;DATA:FIEL BDSELOT;PATT #H6,#H6,#H6,#H6,
#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6
STIM:VEC 331;COUN 14;DATA:FIEL BDSELOT;PATT #H7,#H7,#H7,#H7,
#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7
STIM:VEC 345;COUN 1;DATA:FIEL BDSELOT;PATT #H0

STIM:VEC 1;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B0,
#B0,#B0,#B0
STIM:VEC 8;COUN 6;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B1,#B0, #B1,#B0
STIM:VEC 14;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 21;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 28;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 35;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 42;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 49;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 56;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 63;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0

App/Tech Note: SR2500-10 29

OriginalInterface Technology

SRAM Soft Error Test System

STIM:VEC 70;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 77;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 84;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 91;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 98;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 105;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 112;COUN 7;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 119;COUN 2;DATA:FIEL RAMCLKOT;PATT #B0,#B0
STIM:VEC 121;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 135;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 149;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 163;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 177;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 191;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 205;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 219;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 233;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 247;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 261;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 275;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 289;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 303;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 317;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0

App/Tech Note: SR2500-10

Interface Technology

30 SRAM Soft Error Test System

Original

STIM:VEC 331;COUN 14;DATA:FIEL RAMCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 345;COUN 1;DATA:FIEL RAMCLKOT;PATT #B0

;FF Clock Pattern definition
STIM:VEC 1;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B0, #B0,#B0,#B0
STIM:VEC 8;COUN 6;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B1,#B0, #B1,#B0
STIM:VEC 14;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 21;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 28;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 35;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 42;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 49;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 56;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 63;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 70;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 77;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 84;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 91;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 98;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 105;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 112;COUN 7;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0
STIM:VEC 119;COUN 2;DATA:FIEL FFCLKOT;PATT #B0,#B0
STIM:VEC 121;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 135;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 149;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 163;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,

App/Tech Note: SR2500-10 31

OriginalInterface Technology

SRAM Soft Error Test System

#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 177;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 191;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 205;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 219;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 233;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 247;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 261;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 275;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 289;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 303;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 317;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 331;COUN 14;DATA:FIEL FFCLKOT;PATT #B0,#B0,#B0,#B1,
#B0,#B1,#B0,#B0,#B0,#B0,#B1,#B0,#B1,#B0
STIM:VEC 345;COUN 1;DATA:FIEL FFCLKOT;PATT #B0
STIM:VEC 1;COUN 6;DATA:FIEL WEBOT;PATT #B1,#B1,#B1,#B1, #B1,#B1
STIM:VEC 7;COUN 14;DATA:FIEL WEBOT;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
STIM:VEC 21;COUN 14;DATA:FIEL WEBOT;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
STIM:VEC 35;COUN 14;DATA:FIEL WEBOT;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
STIM:VEC 49;COUN 14;DATA:FIEL WEBOT;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
STIM:VEC 63;COUN 14;DATA:FIEL WEBOT;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
STIM:VEC 77;COUN 14;DATA:FIEL WEBOT;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
STIM:VEC 91;COUN 14;DATA:FIEL WEBOT;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
STIM:VEC 105;COUN 14;DATA:FIEL WEBOT;PATT
#B1,#B1,#B1,#B0,#B1,#B0,#B1, #B1,#B1,#B1,#B0,#B1,#B0,#B1
STIM:VEC 119;COUN 2;DATA:FIEL WEBOT;PATT #B1,#B1
STIM:VEC 121;COUN 225;DATA:FIEL WEBOT;FILL:TYPE REP;INT 1;PATT

App/Tech Note: SR2500-10

Interface Technology

32 SRAM Soft Error Test System

Original

#B1;EXEC

;Reference data for the algorithmic address field
REC:VEC 8;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 15;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 22;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 29;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 36;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 43;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 50;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 57;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 63;COUN 1;AMAC:FIEL ADDRE;PATT NONA
REC:VEC 64;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 71;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 78;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 85;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 92;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 99;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA, INC,
HOLDA
REC:VEC 106;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
REC:VEC 113;COUN 6;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA
REC:VEC 120;COUN 1;AMAC:FIEL ADDRE;PATT HOLDD
REC:VEC 122;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 136;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 150;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 164;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA

App/Tech Note: SR2500-10 33

OriginalInterface Technology

SRAM Soft Error Test System

REC:VEC 178;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 192;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 206;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 220;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 234;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 248;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 262;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 276;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 290;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 304;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 318;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 332;COUN 13;AMAC:FIEL ADDRE;PATT HOLDA, HOLDA, INC, HOLDA,
INC, HOLDA, NONA, HOLDA, HOLDA, INC, HOLDA, INC, HOLDA
REC:VEC 345;COUN 1;AMAC:FIEL ADDRE;PATT HOLDD

;Reference data for the algorithmic data field. Refer to the comment
of STIM:—————:FIEL DATAO;——.
REC:VEC 8;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 15;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 22;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 29;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 36;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 43;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 50;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 57;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD

REC:VEC 64;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,

App/Tech Note: SR2500-10

Interface Technology

34 SRAM Soft Error Test System

Original

HOLDD
REC:VEC 71;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 78;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 85;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 92;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 99;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 106;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 113;COUN 6;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD
REC:VEC 120;COUN 1;AMAC:FIEL DATAE;PATT HOLDD
REC:VEC 122;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 136;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 150;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 164;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 178;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 192;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 206;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 220;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 234;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 248;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 262;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 276;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 290;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 304;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 318;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,

App/Tech Note: SR2500-10 35

OriginalInterface Technology

SRAM Soft Error Test System

HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 332;COUN 13;AMAC:FIEL DATAE;PATT HOLDD, NONA, XOR, NONA, XOR,
HOLDD, NONA, HOLDD, NONA, XOR, NONA, XOR, HOLDD
REC:VEC 345;COUN 1;AMAC:FIEL DATAE;PATT HOLDD

;Define address Reference data source (counter initial value)
REC:VEC 1;COUN 8;DATA:FIEL ADDRED;PATT
#Hxxxx,#hxxxx,#hxxxx,#hxxxx,#hxxxx,#hxxxx,#hxxxx,#hxxxx
REC:VEC 7;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 10;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 12;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 14;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 17;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 19;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 21;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 24;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 26;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 28;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 31;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 33;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 35;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 38;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 40;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 42;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 45;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 47;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 49;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 52;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 54;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 56;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 59;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 61;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 63;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 66;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 68;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 70;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 73;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 75;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 77;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 80;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 82;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 84;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 87;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 89;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 91;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF

App/Tech Note: SR2500-10

Interface Technology

36 SRAM Soft Error Test System

Original

REC:VEC 94;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 96;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 98;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 101;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 103;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 105;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 108;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 110;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 112;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 115;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 117;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 119;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 121;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 124;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 126;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 128;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 131;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 133;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 135;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 138;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 140;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 142;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 145;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 147;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 149;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 152;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 154;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 156;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 159;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 161;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 163;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 166;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 168;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 170;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 173;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 175;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 177;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 180;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 182;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 184;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 187;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 189;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 191;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 194;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 196;COUN 1;DATA:FIEL ADDRED;PATT #H0000

App/Tech Note: SR2500-10 37

OriginalInterface Technology

SRAM Soft Error Test System

REC:VEC 198;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 201;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 203;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 205;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 208;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 210;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 212;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 215;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 217;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 219;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 222;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 224;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 226;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 229;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 231;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 233;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 236;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 238;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 240;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 243;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 245;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 247;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 250;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 252;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 254;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 257;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 259;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 261;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 264;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 266;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 268;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 271;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 273;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 275;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 278;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 280;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 282;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 285;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 287;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 289;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 292;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 294;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 296;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 299;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 301;COUN 1;DATA:FIEL ADDRED;PATT #H0000

App/Tech Note: SR2500-10

Interface Technology

38 SRAM Soft Error Test System

Original

REC:VEC 303;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 306;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 308;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 310;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 313;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 315;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 317;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 320;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 322;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 324;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 327;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 329;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 331;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 334;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 336;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 338;COUN 1;DATA:FIEL ADDRED;PATT #HFFFF
REC:VEC 341;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 343;COUN 1;DATA:FIEL ADDRED;PATT #H0000
REC:VEC 345;COUN 1;DATA:FIEL ADDRED;PATT #H0000

;Define data source (counter initial value)
REC:VEC 123;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 128;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 130;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 135;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 137;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 142;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 144;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 149;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 151;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 156;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 158;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 163;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 165;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF;
REC:VEC 170;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 172;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 177;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF

App/Tech Note: SR2500-10 39

OriginalInterface Technology

SRAM Soft Error Test System

REC:VEC 179;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 184;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 186;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 191;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 193;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF;
REC:VEC 198;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 200;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 205;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 207;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 212;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 214;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 219;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 221;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 226;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 228;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 233;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 235;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 240;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 242;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 247;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 249;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 254;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 256;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 261;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 263;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 268;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 270;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 275;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 277;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 282;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF

App/Tech Note: SR2500-10

Interface Technology

40 SRAM Soft Error Test System

Original

REC:VEC 284;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 289;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 291;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 296;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 298;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 303;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 305;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 310;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 312;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 317;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 319;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 324;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 326;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 331;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 333;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF
REC:VEC 338;COUN 1;DATA:FIEL DATAED;PATT #HFFFFFF
REC:VEC 340;COUN 4;DATA:FIEL DATAED;PATT
#H015555,#H03FFFF,#H02AAAA,#H03FFFF

;Following lines are to define DATAD field.
REC:VEC 121;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 128;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 130;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 135;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 142;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 144;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 149;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 156;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 158;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 163;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000

App/Tech Note: SR2500-10 41

OriginalInterface Technology

SRAM Soft Error Test System

REC:VEC 170;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 172;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 177;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 184;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 186;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 191;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 198;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 200;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 205;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 212;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 214;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 219;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 226;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 228;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 233;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 240;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 242;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 247;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 254;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 256;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 261;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 268;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 270;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 275;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 282;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 284;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 289;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000

App/Tech Note: SR2500-10

Interface Technology

42 SRAM Soft Error Test System

Original

REC:VEC 296;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 298;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 303;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 310;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 312;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 317;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 324;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 326;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 331;COUN 6;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFFFFFF,#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000
REC:VEC 338;COUN 1;DATA:FIEL DATAD;PATT #HFFFFFF
REC:VEC 340;COUN 4;DATA:FIEL DATAD;PATT
#HFFFFFF,#HFC0000,#HFFFFFF,#HFC0000

;Following lines are to define OSELED field.
REC:VEC 1;COUN 120;DATA:FIEL OSELED;FILL:TYPE REP;INT 1;PATT #B1;EXEC
REC:VEC 121;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 124;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 126;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 128;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 131;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 133;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 135;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 138;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 140;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 142;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 145;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 147;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 149;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 152;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 154;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 156;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 159;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 161;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 163;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 166;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 168;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 170;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 173;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 175;COUN 1;DATA:FIEL OSELED;PATT #B0

App/Tech Note: SR2500-10 43

OriginalInterface Technology

SRAM Soft Error Test System

REC:VEC 177;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 180;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 182;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 184;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 187;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 189;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 191;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 194;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 196;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 198;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 201;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 203;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 205;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 208;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 210;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 212;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 215;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 217;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 219;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 222;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 224;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 226;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 229;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 231;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 233;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 236;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 238;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 240;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 243;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 245;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 247;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 250;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 252;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 254;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 257;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 259;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 261;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 264;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 266;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 268;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 271;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 273;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 275;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 278;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 280;COUN 1;DATA:FIEL OSELED;PATT #B0

App/Tech Note: SR2500-10

Interface Technology

44 SRAM Soft Error Test System

Original

REC:VEC 282;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 285;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 287;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 289;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 292;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 294;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 296;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 299;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 301;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 303;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 306;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 308;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 310;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 313;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 315;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 317;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 320;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 322;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 324;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 327;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 329;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 331;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 334;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 336;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 338;COUN 1;DATA:FIEL OSELED;PATT #B1
REC:VEC 341;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 343;COUN 1;DATA:FIEL OSELED;PATT #B0
REC:VEC 345;COUN 1;DATA:FIEL OSELED;PATT #B0

;Define CSELED field

REC:VEC 8;COUN 112;DATA:FIEL CSELED;FILL:TYPE REP;INT 1;PATT
#B00;EXEC
REC:VEC 120;COUN 1;DATA:FIEL CSELED;PATT #BXX
REC:VEC 121;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 135;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 149;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 163;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 177;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 191;COUN 14;DATA:FIEL CSELED;PATT

App/Tech Note: SR2500-10 45

OriginalInterface Technology

SRAM Soft Error Test System

#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 205;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 219;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 233;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 247;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 261;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 275;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 289;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 303;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 317;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 331;COUN 14;DATA:FIEL CSELED;PATT
#Bxx,#Bxx,#Bxx,#B10,#Bxx,#B10,#Bxx,#Bxx,#Bxx,#Bxx,#B01,#Bxx,#B01,#Bxx
REC:VEC 345;COUN 1;DATA:FIEL CSELED;PATT #Bxx

;Define BDSELED field.
REC:VEC 1;COUN 13;DATA:FIEL BDSELED;FILL:TYPE REP;INT 1;PATT #H0;EXEC
REC:VEC 14;COUN 7;DATA:FIEL BDSELED;PATT #H1,#H1,#H1,#H1, #H1,#H1,#H1
REC:VEC 21;COUN 7;DATA:FIEL BDSELED;PATT #H2,#H2,#H2,#H2, #H2,#H2,#H2
REC:VEC 28;COUN 7;DATA:FIEL BDSELED;PATT #H3,#H3,#H3,#H3, #H3,#H3,#H3
REC:VEC 35;COUN 7;DATA:FIEL BDSELED;PATT #H4,#H4,#H4,#H4, #H4,#H4,#H4
REC:VEC 42;COUN 7;DATA:FIEL BDSELED;PATT #H5,#H5,#H5,#H5, #H5,#H5,#H5
REC:VEC 49;COUN 7;DATA:FIEL BDSELED;PATT #H6,#H6,#H6,#H6, #H6,#H6,#H6
REC:VEC 56;COUN 7;DATA:FIEL BDSELED;PATT #H7,#H7,#H7,#H7, #H7,#H7,#H7
REC:VEC 63;COUN 7;DATA:FIEL BDSELED;PATT #H0,#H0,#H0,#H0, #H0,#H0,#H0
REC:VEC 70;COUN 7;DATA:FIEL BDSELED;PATT #H1,#H1,#H1,#H1, #H1,#H1,#H1
REC:VEC 77;COUN 7;DATA:FIEL BDSELED;PATT #H2,#H2,#H2,#H2, #H2,#H2,#H2
REC:VEC 84;COUN 7;DATA:FIEL BDSELED;PATT #H3,#H3,#H3,#H3, #H3,#H3,#H3
REC:VEC 91;COUN 7;DATA:FIEL BDSELED;PATT #H4,#H4,#H4,#H4, #H4,#H4,#H4
REC:VEC 98;COUN 7;DATA:FIEL BDSELED;PATT #H5,#H5,#H5,#H5, #H5,#H5,#H5
REC:VEC 105;COUN 7;DATA:FIEL BDSELED;PATT #H6,#H6,#H6,#H6,
#H6,#H6,#H6
REC:VEC 112;COUN 7;DATA:FIEL BDSELED;PATT #H7,#H7,#H7,#H7,
#H7,#H7,#H7
REC:VEC 119;COUN 2;DATA:FIEL BDSELED;PATT #H0,#H0
REC:VEC 121;COUN 14;DATA:FIEL BDSELED;PATT #H0,#H0,#H0,#H0,
#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0

App/Tech Note: SR2500-10

Interface Technology

46 SRAM Soft Error Test System

Original

REC:VEC 135;COUN 14;DATA:FIEL BDSELED;PATT #H1,#H1,#H1,#H1,
#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1
REC:VEC 149;COUN 14;DATA:FIEL BDSELED;PATT #H2,#H2,#H2,#H2,
#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2
REC:VEC 163;COUN 14;DATA:FIEL BDSELED;PATT #H3,#H3,#H3,#H3,
#H3,#H3,#H3,#H3,#H3,#H3,#H3,#H3,#H3,#H3
REC:VEC 177;COUN 14;DATA:FIEL BDSELED;PATT #H4,#H4,#H4,#H4,
#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4
REC:VEC 191;COUN 14;DATA:FIEL BDSELED;PATT #H5,#H5,#H5,#H5,
#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5
REC:VEC 205;COUN 14;DATA:FIEL BDSELED;PATT #H6,#H6,#H6,#H6,
#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6
REC:VEC 219;COUN 14;DATA:FIEL BDSELED;PATT #H7,#H7,#H7,#H7,
#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7
REC:VEC 233;COUN 14;DATA:FIEL BDSELED;PATT #H0,#H0,#H0,#H0,
#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0,#H0
REC:VEC 247;COUN 14;DATA:FIEL BDSELED;PATT #H1,#H1,#H1,#H1,
#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1,#H1
REC:VEC 261;COUN 14;DATA:FIEL BDSELED;PATT #H2,#H2,#H2,#H2,
#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2,#H2
REC:VEC 275;COUN 14;DATA:FIEL BDSELED;PATT #H3,#H3,#H3,#H3,
#H3,#H3,#H3,#H3,#H3,#H3,#H3,#H3,#H3,#H3
REC:VEC 289;COUN 14;DATA:FIEL BDSELED;PATT #H4,#H4,#H4,#H4,
#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4,#H4
REC:VEC 303;COUN 14;DATA:FIEL BDSELED;PATT #H5,#H5,#H5,#H5,
#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5,#H5
REC:VEC 317;COUN 14;DATA:FIEL BDSELED;PATT #H6,#H6,#H6,#H6,
#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6,#H6
REC:VEC 331;COUN 14;DATA:FIEL BDSELED;PATT #H7,#H7,#H7,#H7,
#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7,#H7
REC:VEC 345;COUN 1;DATA:FIEL BDSELED;PATT #H0

;Define WEBED field
REC:VEC 1;COUN 6;DATA:FIEL WEBED;PATT #B1,#B1,#B1,#B1, #B1,#B1
REC:VEC 7;COUN 14;DATA:FIEL WEBED;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
REC:VEC 21;COUN 14;DATA:FIEL WEBED;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
REC:VEC 35;COUN 14;DATA:FIEL WEBED;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
REC:VEC 49;COUN 14;DATA:FIEL WEBED;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
REC:VEC 63;COUN 14;DATA:FIEL WEBED;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
REC:VEC 77;COUN 14;DATA:FIEL WEBED;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,

App/Tech Note: SR2500-10 47

OriginalInterface Technology

SRAM Soft Error Test System

#B1,#B1,#B1,#B0,#B1,#B0,#B1
REC:VEC 91;COUN 14;DATA:FIEL WEBED;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
REC:VEC 105;COUN 14;DATA:FIEL WEBED;PATT #B1,#B1,#B1,#B0,#B1,#B0,#B1,
#B1,#B1,#B1,#B0,#B1,#B0,#B1
REC:VEC 119;COUN 2;DATA:FIEL WEBED;PATT #B1,#B1
REC:VEC 121;COUN 225;DATA:FIEL WEBED;FILL:TYPE REP;INT 1;PATT
#B1;EXEC

;Define SYNCOT field for debug purpose
;STIM:VEC 1;COUN 345;DATA:FIEL SYNCOT;FILL:TYPE REP;INT 1;PATT
#B0;EXEC ;
;STIM:VEC 1;COUN 1;DATA:FIEL SYNCOT;PATT #B1
;STIM:VEC 317;COUN 1;DATA:FIEL SYNCOT;PATT #B1

;Define SYNCED field for debug purpose
;REC:VEC 1;COUN 345;DATA:FIEL SYNCED;FILL:TYPE REP;INT 1;PATT
#B0;EXEC
;REC:VEC 1;COUN 1;DATA:FIEL SYNCED;PATT #B1
;REC:VEC 317;COUN 1;DATA:FIEL SYNCED;PATT #B1

REC:TRAC:QUAL 1:FIEL DATAED;PATT #hxxxxxx
REC:TRAC:QUAL 1:FIEL ADDRED;PATT #h0000
REC:TRAC:QUAL 1:FIEL OSELED;PATT #b0
REC:TRAC:QUAL 1:FIEL CSELED;PATT #B10
REC:TRAC:QUAL 1:FIEL BDSELED;PATT #hx
REC:TRAC:QUAL 1:FIEL WEBED;PATT #B1
REC:TRAC:QUAL 1:FIEL SYNCED;PATT #Bx
REC:TRAC:QCOM1 1
REC:TRAC:SEQ 1:DEF:FILT DATA:REC NCOM
REC:TRAC:SEQ 1:DEF:CRC:CALC NEV
REC:TRAC:SEQ 1:DEF:ADVS:ON QCOM1:COUN 1
REC:TRAC:SEQ 1:DEF:JUMP 1:ON NEV
REC:TRAC:SEQ 2:DEF:FILT DATA:REC NCOM
REC:TRAC:SEQ 2:DEF:CRC:CALC NEV
REC:TRAC:SEQ 2:DEF:ADVS:ON NCOM:COUN 65500
REC:TRAC:SEQ 2:DEF:JUMP 1:ON NEV

App/Tech Note: SR2500-10

Interface Technology

48 SRAM Soft Error Test System

Original

(THIS PAGE LEFT BLANK INTENTIONALLY)

App/Tech Note: SR2500-11 1

OriginalInterface Technology

TRACE Recording

TRACE Recording SR2500-11

App/Tech Note

Note:

AppNote SR2500-11 is downloadable from the following web link:

http://www.interfacetech.com/appnotes.html

App/Tech Note: SR2500-11

Interface Technology

2 TRACE Recording

Original

(THIS PAGE LEFT BLANK INTENTIONALLY)

Published by
Interface Technology, Inc.

300 S. Lemon Creek Drive
Walnut, CA 91789

User's Manual

SR2500-100 TTL Pod

�����������

	
��������������������
	�������������������������������

Record of Changes

Entered By
Title or

Brief Description
Date of
Change

Change
No.

Initial Release

Reformat manual

Sep 01

May 02

Rev NC

Rev 01

Factory

Factory

SR2500-100 TTL Pod

SR2500-100 TTL Pod 1-1

Rev. 01Interface Technology

User's Manual

C H A P T E R 1

General Information
Description The SR2500 TTL Pod provides remote TTL drive capability for the

SR2500 in applications where the Device Under Test (DUT) can not
reliably drive the transmission cable to the SR2500. This may be due to
weak drive currents, unterminated DUT drivers, or other reasons. And
because the pod can be located close to the device under test, interconnect
cables can be kept to a minimum length. This provides the added benefit
of reducing noise, crosstalk and ringing associated with long,
unterminated cables.

Each TTL Pod provides 32 bi-directional channels, each with independent
Output, Tristate, Expect, Don’t Care (Mask) and Record memories
provided by the SR2500 Digital Test Subsystem. Each channel is capable
of driving an output high, low or tristating the output (high impedance)
while simultaneously monitoring or recording the state of the channel.

The Pod is designed to interface to the Differential ECL (DECL) I/O of
the SR2500. The DECL I/O provides both the drive state and the tristate
control signals to the pod, and receives translated response signals from
the DUT. Only the DECL I/O option for of the SR2500 provides all of the
signals necessary to interface to the TTL Pod. No other SR2500 I/O
interface should be used.

The SR2500 is a C2 VXI module (C-Size, Dual Slot). Follow the instruc-
tions in the SR2500 manual for installing the SR2500 into its VXI chassis.

See Fig 1. The SR2500 TTL Pod connects to the SR2500 front panel via
the two 100 pin cables provided with the pod. Each cable provides sixteen
channels of output, tristate and response signals. The top connector on the
SR2500 DECL I/O connects to the pod connector labeled CH 0-15. The
bottom SR2500 DECL connector is cabled to the pod connector labeled
CH 16-31

Installation

SR2500-100 TTL Pod

Rev. 01 Interface Technology

1-2 User's Manual

Figure 2. Front Panel view of the TTL Pod I/O Connector.

PO WE R
SYS FAI L
AC CESS
O VRTM P

AU X
PWR

S R 2 5 2 0

Power Supply

CH 0-15 CH 16-31

5V -5V

33

1

64

32

N/CGND

I/O Pins

Figure 1. Pod Installation.

SR2500-100 TTL Pod 1-3

Rev. 01Interface Technology

User's Manual

Pin Channel Pin Channel Pin Channel Pin Channel
1 00 9 08 17 16 25 24
2 01 10 09 18 17 26 25
3 02 11 10 19 18 27 26
4 03 12 11 20 19 28 27
5 04 13 12 21 20 29 28
6 05 14 13 22 21 30 29
7 06 15 14 23 22 31 30
8 07 16 15 24 23 32 31

SR2500-100 TTL Pod I/O Pinouts.

External +5 Volt Power

The TTL Pod requires an external +5V, 5A power source. The power is brought into the pod via a Molex connector, part
number 39-30-3055. An on-board DC-DC power converter provides the –5V power for the SR2500 DECL interface. A
second 39-30-3055 Molex connector provides access to the –5V power for checking proper operation of the DC-DC
converter. The pinout for the +5V and –5V connectors are shown in Fig 3.

5 4 3 2 1 5 4 3 2 1

+5V -5V

1 V CC
2 G ND
3 VC C Sense
4 G N D S ense
5 N /C

1 G ND
2 V EE
3 N /C
4 G N D S ense
5 VEE Sense

Figure 3. Pinout for +5 V and -5 V Connectors.

CAUTION
Do NOT connect an external –5V power source to the –5V connector as damage may result. The
connector is provided for measurement only.

The mating assembly for the +5V and –5V connectors re-
quire one Molex part number 39-01-4050, two Molex part
number 44476-3112, two Molex part number 39-00-0039
and one Molex 15-04-0211.

SR2500-100 TTL Pod

Rev. 01 Interface Technology

1-4 User's Manual

The SR2500 TTL Pod converts the differential ECL outputs of the
SR2500 into TTL outputs for the device under test. And it accepts TTL
from the device under test and converts it into differential ECL for the
return to the SR2500. The SR2500 provides both data output and tristate
control to the pod, which in turn provides bi-directional capability for the
DUT.

A DC-DC converter provides the –5V power required by the DECL
translators. The DECL receivers (SR2500 Output and Tristate) are
terminated via 50-ohm resistors through a 118-ohm resistor to VEE.

Principles of Operation

The pod does not re-clock any of the signals provided by the SR2500,
instead the signals are passed through the pod to the DUT. Were the
outputs to be re-clocked, then all formatting and timing parameters
associated with a signal would be lost. Utilizing the pass-through ap-
proach, the full capabilities of the SR2500 are maintained.

Propagation Delay

Because there is propagation delay associated with the conversion from
DECL to TTL, and from TTL to DECL, utilizing the TTL Pod will affect
the operation of an SR2500 test program. The calculated propagation
delay for the pod ranges from 18ns to 45ns, including propagation through
the cables. Actual delay averages at 32ns. These are the propagation
delays for the pod and SR2500-to-pod cables only. The DUT and the
DUT cables introduce additional delays.

�����
������	��

���

��� �����

�

��

�

�����

���

���

��� ���

�

��

�

�����

���

���

���

��

�� ��� ���

���

���

���

�

�������
�������

Figure 4. Pod Electronics, Simplified Schematic.

SR2500-100 TTL Pod 1-5

Rev. 01Interface Technology

User's Manual

If using the SR2500/Pod combination to perform real-time compare of the
DUT response with an expected DUT response, all propagation delays
must be compensated for. Otherwise, it is possible for erroneous error
conditions to be generated. For example, assume the SR2500 were
operating at 25 MHz (40 ns period), and the round trip propagation delay
from the SR2500, through the pod, through the DUT, back through the
pod and returning to the SR2500 were 55 ns. By the time the DUT
responds to the first SR2500 test pattern (vector #1), the SR2500 has
moved to the second test vector. The SR2500 would then be comparing
the DUT response to vector #1 with the expected response stored at vector
#2. The SR2500 provides three methods for dealing with large propaga-
tion delays.

The first, and least desirable method is to manually offset the expected
response by an appropriate number of vectors. In the example cited
above, you would store the expected response to stimulus vector #1 at
response vector #2, and the expected response to stimulus vector #2 at
response vector #3. This can lead to confusion in the creation and mainte-
nance of your test program.

The next approach is valid if the round trip propagation delay is well
within the vector cycle time of the test program. In this case, you would
simply adjust the sample delay to a point in time where the DUT response
is guaranteed to be valid. Using the above example, if the round trip
delay were 55 ns, but the test rate were 10 MHz (100 ns), you could set
the sample delay to 95 ns and be assured of catching the DUT response.
However, this approach works only when the DUT response is guaranteed
to be received within the same test cycle as the stimulus pattern that
initiated the response.

The last method takes advantage of the SR2500’s Expect Offset param-
eter. The expect offset function delays the comparison of the DUT
response with the expected response by one or more full clock cycles. In
effect, the expect offset feeds the expected response pattern stored in the
SR2500’s expect memory through a FIFO before using it to compare
against the DUT response. This FIFO can be from 0 to 7 clock cycles in
length, allowing compensation for delays up to 7 full test cycles. The
sample delay may still be used to add an additional delay of almost one
full clock cycle resulting in the ability to compensate for nearly eight full
clock cycles of propagation delay.

Programming:
Programming an SR2500 with the TTL Pod installed is identical to
programming the SR2500 with standard TTL outputs, except for the
effects of propagation delays, as discussed above. Channel groups can be
created as Output type fields, Tristate type fields, OT (Output/Tristate)

SR2500-100 TTL Pod

Rev. 01 Interface Technology

1-6 User's Manual

type fields, Expect type fields, Don’t Care (Mask) type fields, ED (Expect/
Don’t’ Care) type fields and Record type fields; the same as for SR2500
systems without pods.

If separate Output and Tristate type fields are defined for a field, then the
output will be tristated for any bit at any time where a “1” is stored in the
tristate field. If a combined OT type field is used, then an “X” value will
cause a bit to be tristated.

Wrap-Around Test

Because the TTL Pod connects the TTL driver and the TTL receiver
internally, a simple wrap-around test can easily be created and executed to
validate proper operation of the pod. The attached SCPI test program can
be used to perform a wrap-around test on a single pod connected to
channel card #1 on the SR2500. This program can also serve as a guide
for creating other test programs.

The test was written to operate at 25 MHz. Since the pod delay is in the
order of 30-40 ns, approaching the clock period of the test, the sample
time was set to 20 ns and an expect offset of 1 cycle was programmed for
the response fields.

The test utilizes the real-time compare capability of the SR2500 to check
operation of the pod. If the pod is connected and operating properly, the
error state will be “0” – compare good – after the test completes. If there
are any errors, the error state will be “1” – compare failed. The error state
does not differentiate between one compare failure, or many. The record
Trace function can be used to qualify that only compare failed cycles are
recorded. This provides an easy method for determining the number of
failures and which bits failed.

Since the test uses the error flag, it is necessary to “flush the pipeline” of
the SR2500 at the beginning of the test. This guarantees that the SR2500
is in a known state prior to the actual test patterns being generated, and
DUT responses evaluated. Refer to the SR2500 manual for additional
information about pipeline flushing. The test pattern is a simple walking
one pattern starting at test vector #4.

SR2500-100 TTL Pod 1-7

Rev. 01Interface Technology

User's Manual

REC:VEC 1;COUN 36;DATA:FIEL RESP;PATT #bXXXXXXXXXXXXXXXXXXX

TEST:DEF TTL_POD:SIZE 64

SYST:TEST TTL_POD

SYST:PROG 1;FREQ 2.500000e+07;:BMAS:TIM 5.000000e-02;:SOUR:ROSC:SOUR INT

SYST:CLOCK:SOUR INT;SLOPE POS;LEVEL 1.200000e+00;:SYST:GATE:SOUR INT;POL
NORM;LEVEL 1.200000e+00

TRIG:SYST:SOUR BUS;SLOP POS;LEVEL 1.200000e+00

FIELD:DEF STIM:TYPE OT:PIN
C1P32,C1P31,C1P30,C1P29,C1P28,C1P27,C1P26,C1P25,C1P24,C1P23,C1P22,C1P21,C1P20,C1P19,C1P18,C1P17,

C1P16,C1P15,C1P14,C1P13,C1P12,C1P11,C1P10,C1P9,C1P8,C1P7,C1P6,C1P5,C1P4,C1P3,C1P2,C1P1

FIELD:DEF RESP:TYPE ED:PIN
C1P32,C1P31,C1P30,C1P29,C1P28,C1P27,C1P26,C1P25,C1P24,C1P23,C1P22,C1P21,C1P20,C1P19,C1P18,C1P17,C1P16,C1P15,C1P14,

C1P13,C1P12,C1P11,C1P10,C1P9,C1P8,C1P7,C1P6,C1P5,C1P4,C1P3,C1P2,C1P1

FIELD:DEF REC:TYPE REC:PIN
C1P32,C1P31,C1P30,C1P29,C1P28,C1P27,C1P26,C1P25,C1P24,C1P23,C1P22,C1P21,C1P20,C1P19,C1P18,C1P17,C1P16,C1P15,

C1P14,C1P13,C1P12,C1P11,C1P10,C1P9,C1P8,C1P7,C1P6,C1P5,C1P4,C1P3,C1P2,C1P1

REC:COND:SAMP:FIEL RESP;MODE EDGE,2.000000e-08;FIEL RESP;EOFF 1

STIM:COND:OFOR:FIEL STIM;MODE NRZ,0.000000e+00

REC:COND:SAMP:FIEL REC;MODE EDGE,2.000000e-08;FIEL REC;EOFF 1

STIM:VEC 1;COUN 36;DATA:FIEL STIM;PATT
#b00000000000000000000000000000000,#b00000000000000000000000000000000,#b000000000000000000000

00000000000,#b00000000000000000000000000000001,#b00000000000000000000000000000010,#b000000000

00000000000000000000100,#b00000000000000000000000000001000,#b00000000000000000000000000010000

,#b00000000000000000000000000100000,#b00000000000000000000000001000000,#b00000000000000000000

000010000000,#b00000000000000000000000100000000,#b00000000000000000000001000000000,#b00000000

000000000000010000000000,#b00000000000000000000100000000000,#b0000000000000000000100000000000

0,#b00000000000000000010000000000000,#b00000000000000000100000000000000,#b0000000000000000100

0000000000000,#b00000000000000010000000000000000,#b00000000000000100000000000000000,#b0000000

0000001000000000000000000,#b00000000000010000000000000000000,#b000000000001000000000000000000

00,#b00000000001000000000000000000000,#b00000000010000000000000000000000,#b000000001000000000

00000000000000,#b00000001000000000000000000000000,#b00000010000000000000000000000000,#b000001

00000000000000000000000000,#b00001000000000000000000000000000,#b00010000000000000000000000000

000,#b00100000000000000000000000000000,#b01000000000000000000000000000000,#b10000000000000000

000000000000000,#bXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

SR2500-100 TTL Pod

Rev. 01 Interface Technology

1-8 User's Manual

REC:VEC 1;COUN 36;DATA:FIEL RESP;PATT

#bXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX,#bXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX,#b0000000000000000000

0000000000000,#b00000000000000000000000000000001,#b00000000000000000000000000000010,#b00000

000000000000000000000000100,#b00000000000000000000000000001000,#b00000000000000000000000000

010000,#b00000000000000000000000000100000,#b00000000000000000000000001000000,#b000000000000

00000000000010000000,#b00000000000000000000000100000000,#b00000000000000000000001000000000,

#b00000000000000000000010000000000,#b00000000000000000000100000000000,#b0000000000000000000

1000000000000,#b00000000000000000010000000000000,#b00000000000000000100000000000000,#b00000

000000000001000000000000000,#b00000000000000010000000000000000,#b00000000000000100000000000

000000,#b00000000000001000000000000000000,#b00000000000010000000000000000000,#b000000000001

00000000000000000000,#b00000000001000000000000000000000,#b00000000010000000000000000000000,

#b00000000100000000000000000000000,#b00000001000000000000000000000000,#b0000001000000000000

0000000000000,#b00000100000000000000000000000000,#b00001000000000000000000000000000,#b00010

000000000000000000000000000,#b00100000000000000000000000000000,#b01000000000000000000000000

000000,#b10000000000000000000000000000000,#bXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

STIM:VEC 1;COUN 36;CMAC:DEF (SP (OUT)),(WL (OUT(COUN == 10))),(CLEARE (OUT)),(SL (OUT(COUN ==
10000))),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT
(OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT
(OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT
(OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(OUT (OUT)),(EL (OUT)),(EP
(OUT))

SR2500-100 TTL Pod 1-9

Rev. 01Interface Technology

User's Manual

SR2500-100 TTL POD SPECIFICATIONS*

Output Channels

Channels 32
Driver 74F125
Voh 2.0V min., 3.3V typ.
Vol 0.42V typ., 0.55V max.
Ioh -15 mA, max
Iol 64 mA, max

Input Channels

Channels 32
Receiver 74F244
Vih 2.0V min.
Vil 0.8V max.
Iih 20uA, max
Iil -1.6mA, max

I/O Chanels: Power

Voltage 5.0V
Current 5.0A

Dimensions

Length 9.1"
Width 6.2"
Height 1.5"

Environmental

Operating Temperature 0º C to +40º C

Mating Connector (Virgina Panel)

Connector Housing 510-108-101
Male Pins (64) 610-110-108

Power Connector (Molex)

Connector Housing 39-01-4050
Male Pins (2) 44476-3112
Male Pins (2) 39-00-0039
Polarizing Key 15-04-0211

SR2500-100 TTL Pod

Rev. 01 Interface Technology

1-10 User's Manual

(THIS PAGE INTENTIONALLY LEFT BLANK)

Published by
Interface Technology, Inc.

300 S. Lemon Creek Drive,
Walnut, CA 91789

